BEFORE THE TELANGANA STATE ELECTRICITY REGULATORY COMMISSION

HYDERABAD

CASE NO.

OF 2019

(To be filled by the office)

IN THE MATTER OF:

Filing of Capital Investment Plan during the control period comprising five years from 1st April 2019 to 31st March 2024 in respect of 2X600 MW Singareni Thermal Power Plant for approval in accordance with Regulation 7(b) of Telangana State Electricity Regulatory Commission (Terms and Conditions of Generation Tariff) regulation 2019.

AND IN THE MATTER OF:

The Singareni Collieries Company Limited (SCCL): Kothagudem Collieries, Bhadradri Kothagudem Dist, Telangana State - 507101; Represented by its authorized representative i.e., **Director Finance**, **SCCL**.

PETITIONER

Submitted on 30 MAR 2019.

AND

- Southern Power Distribution Company of Telangana Limited (TSSPDCL): Corporate Office: # 6-1-50, Mint Compound, Hyderabad, Telangana-500 063.
- Northern Power Distribution Company of Telangana Limited (TSNPDCL): H.No: 2-5-31/2, corporate Office, Vidyut Bhavan, Nakkalagutta, Hanamkonda, Warangal, Telangana- 506001

RESPONDENTS

Sr No	Particular	Page No
1.	Affidavit	1-2
2.	Cause title	3
3.	Facts of the case	3-4
4.	Ground of the case	4-5
5.	Summary of Capital investment Plan	5-6
6.	Authorization for filing on the petition	6

Master Index

7.	Jurisdiction	7		
8.	Limitation			
9.	9. Court Fee			
10.	10. Declaration			
11.	Prayer before Hon'ble commission	7		
Annexure I	Detail Capital Investment Plan	8-154		
Annexure II	Authorization for filing before TSERC.	8-154		
Annexure III	A copy of Banker's Cheque No. 253068 dated 27-03-2019 for Rs 10,000 (Ten thousand) submitted as filing fee.	159		

Through

apm

Shri N. Balram Director(Finance) The Singareni Collieries Company Limited Kothagudem Collieries Bhadradri Kothagudem Dist, Telangana State - 507101

(Form II) (See clause 14 and 15) General Heading for Proceedings BEFORE THE TELANGANA STATE ELECTRICITY REGULATORY COMMISSION

HYDERABAD

CASE NO.

OF 20

(To be filled by the office)

IN THE MATTER OF:

Filing of Capital Investment Plan during the control period comprising five years from 1st April 2019 to 31st March 2024 in respect of 2X600 MW Singareni Thermal Power Plant for approval in accordance with Regulation 7(b) of Telangana State Electricity Regulatory Commission (Terms and Conditions of Generation Tariff) regulation 2019.

AND IN THE MATTER OF:

MAR 2019

The Singareni Collieries Company Limited (SCCL): Kothagudem Collieries, Bhadradri Kothagudem Dist, Telangana State - 507101; Represented by its authorized representative i.e., Director Finance, SCCL.

PETITIONER

AND

- Southern Power Distribution Company of Telangana Limited (TSSPDCL): Corporate Office: # 6-1-50, Mint Compound, Hyderabad, Telangana-500 - 063.
- 2. Northern Power Distribution Company of Telangana Limited (TSNPDCL):
 H.No: 2-5-31/2, corporate Office, Vidyut Bhavan, Nakkalagutta,
 Hanamkonda, Warangal, Telangana- 506001

RESPONDENTS

Affidavit verifying the Petition

I, Shri N. Balram, son of N. Hunya aged 38 years residing at Bungalow no: S-4, Bungalows area, Lakshmidevipally, Kothagudem – 507101 do solemnly affirm and say that

- 1. I am the Director Finance of SCCL, the petitioner in the above matter and am duly authorized by the said petitioner to make this affidavit.
- 2. I have read and understood the contents of the accompanying capital investment plan from 1st April 2019 to 31st March 2024 for 2 X 600 MW Singareni Thermal Power Project located in Jaipur, Mancherial filed in this petition before this Hon'ble Commission for approval. The statements made in paragraphs of the petition accompanying affidavit now shown to me are true to my knowledge and are derived from official records made available to me and are based on information and advice received which I believe to be true and true.

I Solemnly affirm at Hyderabad on 29th day of March, 2019 that the contents of the above affidavit are true to my knowledge, no part of it is false, and nothing material has been concealed there from.

afra

(Shri N. Balram)

1

Place : Hyderabad Date : 29.03.2019

ATTESTED

ATTESTED NOTARY M. RAMCHANDER RAO ADVOCATE H. No. 22-2-849/3, Noor Khan Bazar, HYD-24. T.S. India. Goms No. 457/11. 2 9 MAR 2019

HYDERABAD

CASE NO.

OF 2019

(To be filled by the office)

IN THE MATTER OF:

Filing of Capital Investment Plan during the control period comprising five years from 1st April 2019 to 31st March 2024 in respect of 2X600 MW Singareni Thermal Power Plant for approval in accordance with Regulation 7(b) of Telangana State Electricity Regulatory Commission (Terms and Conditions of Generation Tariff) regulation 2019.

AND IN THE MATTER OF:

The Singareni Collieries Company Limited (SCCL): Kothagudem Collieries, Bhadradri Kothagudem Dist, Telangana State - 507101; Represented by its authorized representative i.e., **Director Finance**, SCCL.

PETITIONER

AND

- Southern Power Distribution Company of Telangana Limited (TSSPDCL): Corporate Office: # 6-1-50, Mint Compound, Hyderabad, Telangana-500 063.
- Northern Power Distribution Company of Telangana Limited (TSNPDCL): H.No: 2-5-31/2, corporate Office, Vidyut Bhavan, Nakkalagutta, Hanamkonda, Warangal, Telangana- 506001

RESPONDENTS

3. Facts of the Case: This petition is filed for approval of Capital Investment Plan during the control period comprising five years from 1st April 2019 to 31st March 2024 in respect of 2X600 MW Singareni Thermal Power Plant in accordance with Regulation 7(b) of Telangana State Electricity Regulatory Commission (Terms and Conditions of Generation Tariff) regulation 2019.

The details of Petitioner are respectfully submitted as under:

- I. Name and Address of Applicant: The Singareni Collieries Company Limited (SCCL), Kothagudem Collieries, Bhadradri Kothagudem Dist, Telangana State -507101
- II. Primary Business of the Applicant: Coal Mining
- **III.** Details of Distribution Licensee purchasing power:
 - a. Southern Power Distribution Company of Telangana Limited (TSSPDCL): Corporate Office: # 6-1-50, Mint Compound, Hyderabad,Telangana- 500063.
 - b. Northern Power Distribution Company of Telangana Limited (TSNPDCL): H.No: 2-5-31/2, Corporate Office, Vidyut Bhavan, Nakkalgutta, Hanamkonda, Warangal, Telangana- 506001.
- IV. Details of Generating Company: The Singareni Collieries Company Limited(SCCL): Kothagudem Collieries, Bhadradri Kothagudem Dist, Telangana State -507101.
- V. Name and Location of the Generating station for which Aggregate Revenue Requirement and tariff to be determined, is as follows:
 - a. Name/Location of Generating Station: Singareni Thermal Power Project (STPP), Pegadapalli (V), Jaipur Mandal, Mancherial District, Telangana
 - b. Total existing unit wise installed capacity in MW: Unit-I: 600 MW, Unit-II: 600 MW
 - c. Nature of Generation plant: Thermal
 - d. Type of primary and secondary fuel:
 - i. Primary Fuel: Coal
 - ii. Secondary Fuel: Light Diesel Oil/Heavy Fuel Oil
 - e. Commercial operation of units:
 - i. Unit-I: 25.09.2016
 - ii. Unit-II: 02.12.2016

4. Grounds of the case: This filing for capital investment plan is in accordance with the provisions of the Section 62.1 and 86.1 (a) of Electricity Act 2003 read with regulation 7 of Telangana State Electricity Regulatory Commission (Terms and Conditions of Generation Tariff) regulation 2019.

(4)

While filing the present Capital investment plan, The Singareni Collieries Company Limited has endeavored to comply with the various applicable legal and regulatory directions of this Hon'ble Commission including the directions contained in the Conduct of Business regulation 2015 and the Regulations 1 of 2019 (Terms and Conditions of generation Tariff regulation 2019) issued by Hon'ble TSERC.

Based on the information available, the applicant has made bona-fide efforts to comply with the directions of the Hon'ble Commission and discharge its obligations to the best of its abilities. However, should any further material become available in the near future, the Applicant reserves the right to file such additional information and consequently amend/revise the application.

5. Summary of Capital Investment Plan

A summary of capital investment plan is placed below:

Singareni Collieries Company Limited (SCCL) is a coal mining company owned by the Government of Telangana with 51% shareholding. Government of India owns remaining 49% shares of the company. SCCL established Coal based Singareni Thermal Power Plant (STPP) with two units of 600 MW in Jaipur Mandal, Mancherial District of Telangana. The units of STPP achieved COD during financial year 2016-17. STPP supplies power to state Discoms of Telangana and the tariff of such sale of power is to be determined by Hon'ble TSERC as per 86.1(a) of electricity Act 2003.

Hon'ble TSERC has notified terms and condition of generation tariff regulation 2019 (Regulation no 1 of 2019) for determination of multi-year tariff for the period 2019-24. Regulation 7(b) of aforesaid tariff regulation stipulates the generator to submit capital investment plan for 2019-24 at the beginning of the control period for the existing capacity.

The capital investment plan (CIP) for STPP is prepared primarily based on capital expenditure towards compliance of new pollution norms for which DPR was prepared by M/s NTPC limited and capital expenditure for procurement of critical modules for which proposal is obtained from original equipment manufacturer (OEM). The other part of CIP is proposed for works required for railway siding and for civil work in main plant area and township area.

SUMMARY OF CAPITAL INVESTMENT PLAN FOR FY 2019-24 (BASED ON PUT TO

6

			USE)				
							IN Crores)
SL NO	DESCRIPTION	FY 2019-20	FY 2020-21	FY 2021-22	FY 2022-23	FY 2023-24	Total
1	FLUE GAS DE- SULPHURISATION SYSTEM (FGD)	0	0	645.32	0	0	645.32
2	IN-FURNACE MODIFICATIONS FOR NOX MITIGATION	0	19	19	0	0	38
3	OPERATION & MAINTENANCE MODULES	153.10	82.95	65.12	0	0	301.18
4	RAILWAY WORKS	26.94	24.50	79.60	0	0	131.03
5	MAIN PLANT CIVIL WORKS	26.91	20.98	8.00	0	0	55.89
6	TOWNSHIP CIVIL WORKS	7.81	10.20	6.14	0	0	24.15
	Total	214.75	157.63	823.18	0	0	1195.57

Proposed expenditure of CIP is given in the table below:

Further, as it is difficult to project the capital expenditure for 2019-24 as per Ind AS 16, STPP has sought permission from the Hon'ble commission to submit these expenditures during Mid-term review and End of control period review for consideration of the commission.

The detail Capital investment Plan is enclosed in Annexure I.

6. Authorization for filing on the petition: The Director (Finance) of SCCL has been authorized to sign on the petition / documents to be filed before the Hon'ble TSERC. Copy of the authorization is enclosed as Annexure II.

- 7. Jurisdiction: This Capital investment Plan is related to tariff determination and is within the Jurisdiction of TSERC. As per section 62, Appropriate commission can determine the tariff for supply of electricity by a generating company to a distribution licensee. Further, the state electricity regulatory commission shall determine the tariff for generation within the state as per section 86.1(a).
- 8. Limitation: The determination of tariff is a continuous process and the provisions of limitation Act does not apply to the issues to be decided as part of regulatory process such as approval of capital investment plan etc.
- 9. Court Fee: The present petition is filed as normal petition accompanying the Multi Year tariff petition for 2019-24. Hence a fees of Rs 10,000/- is paid as per regulation 4 (c) of regulation 2of 2016 (levy of fees for various services rendered by the commission). A copy of the banker's cheque is attached as Annexure -III.
- 10.**Declaration:** This subject matter of this petition has not been raised by the petitioner before any other competent forum and that no other competent forum is currently seized of the matter or has passed any order in relation thereto.

11. Prayer before Hon'ble commission

SCCL prays to the Hon'ble Commission that it may be pleased to:

- a) Consider the submissions made by SCCL and allow the capital investment plan for Financial year 2019-24 in respect of 2x 600 MW Singareni Thermal Power Plant;
- b) Pass such further Orders, as the Hon'ble Commission may deem fit and appropriate considering the circumstances of the case.

(Shri N. Balram)

MBIR

Place : Hyderabad Date :29.03.2019

Filing of

Capital Investment Plan 2019-2024

For

Singareni Thermal Power Project (2 X 600 MW) in Jaipur, Mancherial District.

То

Telangana State Electricity Regulatory Commission (TSERC)

By

The Singareni Collieries Company Limited

6

INDEX

1		EXECU	TIVE SUMMARY	2
2		INTRO	DUCTION :	4
	2.1	BAC	KGROUND:	4
	2.2	ENA	BLING REGULATION	4
	2.3	Сар	ITAL EXPENDITURE UP TO CUTOFF PERIOD:	4
3		APPRO	ACH TO CAPITAL INVESTMENT PLAN:	5
4			AL INVESTMENT FOR ENVIRONMENTAL COMPLIANCE:	
	4.1	BAC	KGROUND	-
	4.2		ITAL INVESTMENT FOR SOX COMPLIANCE:	
	1102445	4.2.1	Preamble:	
		4.2.2	Different Desulphurization Processes	
		4.2.3	Comparison of different technologies of desulphurisation process:	
	•	4.2.4	The reasons for opting Wet limestone process:	
		4.2.5	Lime stone requirement for STPP	
		4.2.6	Additional auxiliary consumption for FGD	
		4.2.7	Cost Estimate For Installation Of Flue Gas Desulfurization (FGD) System	
		4.2.8	Summary of proposal for FGD:	
	4.3		PITAL INVESTMENT FOR NOX COMPLIANCE:	
	4.5	4.3.1	Preamble:	
		4.3.2	Summary of proposal for NOx mitigation:	
5		CAPIT	AL INVESTMENT IN CRITICAL MODULE	
	5.1	Jus	TIFICATION	
	5.2		railed Proposal for capital modules	
		CADIT		
6		CAPIT	AL INVESTMENT IN RAILWAY WORKS:	14
	6.1		TIFICATION	
	6.2	DET	AILED PROPOSAL	16
7		CAPIT	AL INVESTMENT IN ERECTION WORK IN MAIN PLANT:	
	7.1	1 Jus	TIFICATION:	
	7.2	2 DET	AILED PROPOSAL	
8		CADIT	AL INVESTMENT IN TOWNSHIP CIVIL WORKS	24
0				
	8.3		TIFICATION	
	8.2	2 DET	FAILED PROPOSAL	24
9			SCHEME CAPITAL EXPENDITURE	
10)		ICING PLAN:	
1:	L		OMPLETE PROPOSAL	
12	2		PILL OVER ITEMS:	
13	3	PRAY	ER BEFORE HON'BLE COMMISSION	29

1 Executive summary

Singareni Collieries Company Limited (SCCL) is a coal mining company owned by the Government of Telangana with 51% shareholding. Government of India owns remaining 49% shares of the company. SCCL established Coal based Singareni Thermal Power Plant (STPP) with two units of 600 MW in Jaipur Mandal, Mancherial District of Telangana. The units of STPP achieved COD during financial year 2016-17. STPP supplies power to state Discoms of Telangana and the tariff of such sale of power is to be determined by Hon'ble TSERC as per 86.1(a) of electricity Act 2003.

Hon'ble TSERC has notified terms and condition of generation tariff regulation 2019 (Regulation no 1 of 2019) for determination of multiyear tariff for the period 2019-24. Regulation 7(b) of aforesaid tariff regulation stipulates the generator to submit capital investment plan for 2019-24 at the beginning of the control period for the existing capacity.

The capital investment plan (CIP) for STPP is prepared primarily based on capital expenditure towards compliance of new pollution norms for which DPR was prepared by M/s NTPC limited and capital expenditure for procurement of critical modules for which proposal is obtained from original equipment manufacturer (OEM). The other part of CIP is proposed for works required for railway siding and for civil work in main plant area and township area. Proposed expenditure of CIP is given in the table below:

				-		(IN Crores
SL NO	DESCRIPTION	FY 2019- 20	FY 2020- 21	FY 2021- 22	FY 2022- 23	FY 2023- 24	Total
1	FLUE GAS DE- SULPHURISATION SYSTEM (FGD)	0	0	645.32	0	0	645.32
2	IN-FURNACE MODIFICATIONS FOR NOX MITIGATION	0	19	19	0	0	38
3	OPERATION & MAINTENANCE MODULES	153.10	82.95	65.12	0	0	301.18
4	RAILWAY WORKS	26.94	24.50	79.60	0	0	131.03

5	ERECTION WORKS IN MAIN PLANT	26.91	20.98	8.00	0	0	55.89
6	TOWNSHIP CIVIL WORKS	7.81	10.20	6.14	0	0	24.15
	Total	214.75	157.63	823.18	0	0	1195.57

Further, as it is difficult to project the capital expenditure for 2019-24 as per Ind AS 16, STPP has sought permission from the Hon'ble commission to submit these expenditures during Mid-term review and End of control period review for consideration of the commission.

The projected expenditure from 01.10.2018 to 31.03.2019 was 360.62 Crore. However, some of these expenditures will be spilled over to next control period.

2 Introduction :

2.1 Background:

Singareni Collieries Company Limited (SCCL) is a coal mining company incorporated under the companies Act 1956. The company is owned by the Government of Telangana with 51 % Shareholding. The shareholding of Government of India in SCCL is 49%.

SCCL has entered into the business of power generation by setting up a 2X600 MW Coal based Thermal Power Plant, namely Singareni Thermal Power Plant (STPP) in Jaipur of Mancherial District. The units of STPP achieved COD during financial year 2016-17 in the dates as mentioned below.

COD Unit-I : 25.09.2016 COD Unit-II : 02.12.2016

SCCL had entered into a Power Purchase Agreement (PPA) with two Distribution companies of Telangana for supplying the total power generated from STPP at a tariff decided by hon'ble Telangana State Electricity Regulatory Commission (TSERC). The PPA shall remain valid for a period of 25 years from the COD of the last unit (unit-II).

2.2 Enabling Regulation

It is to state that as per section 62, the appropriate commission can determine the tariff for supply of electricity by a generating company to a distribution licensee. The state electricity regulatory commission shall determine the generation tariff within the state in accordance with section 86.1(a) of electricity act.

Hon'ble TSERC has notified terms & conditions of generation tariff 2019 for determination of tariff with respect to generators selling within the state. This regulation shall be applicable for the control period consisting five years from April 1st 2019 to March 31st 2024.

Regulation 7(b) of aforesaid tariff regulation provides for submission of capital investment plan by the generators which is to be filed at the beginning of the control period.

Regulation 7.4 provides that the capital investment plan during 2019-24 is required to be commensurate with existing capacity. Accordingly, STPP has prepared capital investment plan during the control period commensurate with the requirement of existing generating capacity of 2X600 MW.

It is to state that the proposal of constructing STPP Phase II (1 x 800 MW) is under active consideration by the SCCL management. However, the necessary permissions have not been obtained till date. The Hon'ble commission is requested to allow SCCL to submit capital investment plan for STPP phase II after receiving all necessary approval.

2.3 Capital expenditure up to cutoff period:

The capital cost of the STPP (2 x 600 MW) project as per revised cost estimate was 8584 crore which is the net of capital expenditure amounting 8780 crore and a claim of grant from CCDAC amounting 196 crores. The project has expended 8461.94 crore upto 30.09.2018 as per audited statement of capital expenditure. The balance expenditure is expected to be made by 31st March 2019 except some spill over items.

3 Approach to Capital Investment Plan:

It is stated that the capital investment Plan is prepared by considering schemes of high importance. Some of the schemes are necessitated to comply new environment protection rules. Scheme to purchase critical modules is found to be important considering the high PLF commitment in the coming control period and the cases of failures reported in similar machines.

Railway electrification by constructing overhead lines and by commissioning signalling and telecommunication system shall be made to ensure safe running of railway siding. The facilities such as market complex, sports complex or club building are a regular feature in other thermal power plants. These infrastructures are required for modest living in the township and are required to be constructed by the company. Expenditures for construction of watch towers along the boundary wall are required from security point of view. The requirement of works in main plant area and township were reviewed. It is also found that several work in these areas also need to be taken up during 2019-24.

The accounting of Property, Plant and equipment is required to be made as per new accounting standard Ind AS 16. The segregation of capital item as per Ind AS 16 is a complicated process. Accordingly, the non-scheme capital expenditures as per AS 16 will be known at the end of years and a projection of these expenditures cannot be made now.

4 Capital investment for Environmental compliance:

4.1 Background

It is to submit that Ministry of Environment, Forest and Climate Change (MOEF &CC) has issued notification no: S.O.3305(E) titled 'Environmental (Protection) Amendment rules, 2015 dated 7.12.2015. The said notification has brought out amendments to Schedule - I of Environment (Protection) Rules, 1986 fcr emission norms applicable to thermal power stations.

Both the units of STPP have been commissioned in calendar year 2016. Accordingly, following emission norms which are applicable to the thermal power plant TPPs (Units) installed between 1st January 2004 and 1st January 2017 as per the amendment notification will also be applicable to STPP units.

POLLUTANTS	BEFORE AMENDMENT	AFTER AMENDMENT
Particulate Matter (PM)	100 mg/Nm3	50 mg/Nm3
Sulphur Dioxide (SO2)	600 mg/Nm3	200 mg/Nm3
Oxides of Nitrogen	NOT SPECIFIED	300 mg/Nm3

Mercury (Hg)	0.03 mg/Nm3	0.03 mg/Nm3
--------------	-------------	-------------

Currently STPP, SCCL is in compliance with the normative emission limit with respect to particulate matter and mercury. It is to state that STPP, SCCL has awarded the work of preparing feasibility report and Detailed project Report (DPR) to M/s NTPC for complying SO₂ emission norms and working closely with original equipment manufacturer (OEM) towards In-furnace modifications for NOx mitigation.

The emission limits as per amended notification are to be met within two years from date of the amendment notification.

However, in view of technical Challenges in implementing new technologies like FGD, revised dates for compliance of new emission standards was submitted by Ministry of Power vide its letter dated 13.10.2017.

As per the timeline provided in the revised plan, the FGD system for Units 1 and 2 (2X600 MW) of SCCL was required to be put into operation within the Dec'2019.

It is stated that STPP sought extension of time from Dec'2019 to Dec'2022 for complying SO₂ emission limit considering the time required for floating tender, awarding work, erecting and commissioning of FGD system by its letter dated 23.01.2019. The letter is attached as **Appendix A.**

It is stated that M/s NTPC Ltd submitted DPR for FGD system which is attached as Appendix B.

4.2 Capital investment for SOx compliance:

A summary of the DPR for FGD system as prepared by M/s NTPC Ltd is presented below:

4.2.1 Preamble:

SO₂ emission from fossil fuel fired power plants is proportional to Sulphur content of fuel. Power plants in India traditionally use a very low/medium grade coal with low/medium Sulphur content. The sulphur content in the coal supplied to STPP is in the range of 0.65%-1.15% as revealed by ultimate analysis of coal made on as received basis (100% BMCR Condition).

The SO₂ emissions from STPP, SCCL (2X600 MW) is estimated to be around 2000-3500 mg/Nm³ considering the reported range of sulphur content in the coal supplied to STPP in absence of desulphurization system.

The estimated SO₂ emission from STPP is approximately 9-15 times the SO₂ emissions permitted by the new environment norms. It is therefore, required to install desulphurization

system capable to reduce SO₂ by 95% which shall result in a net emission level lesser than given limit of 200 mg/Nm3.

4.2.2 Different Desulphurization Processes

Nearly all flue gas desulphurization processes depend on the fact that SO₂ is acidic in nature and use an alkaline substance, most commonly lime or lime stone to neutralize it. Other alkalis like sodium based, magnesium-based alkalis and other type of alkalis such as Ammonia etc. are also used. FGD processes are classified into three different types:

- i) Semi dry / dry process
- ii) Wet FGD process
- iii) Dry Sorbent Injection System

4.2.3 Comparison of different technologies of desulphurisation process:

The following table depicts the comparison made for available desuperization processes across different technological and commercial parameters.

Item	Spray Dry Process	Process CFB / CDS Dry	Wet Limestone	Ammonia process	Dry Sorbent Injection (DSI)
Sorbent	Lime	Lime	Limestone	Ammonia	Sodium bicarbonate
Coal Sulphur Limit	For low and medium Sulphur content coal	No limit	No Sulphur content limit	No Sulphur content limit	For low and medium Sulphur content coal
Removal efficiency	90-95%	Above 95%	Above 95%	Above 95%	<85%
Sorbent source	Hard to obtain	Hard to obtain	Local	Depends on availability	Depends on availability
Sorbent Utilization	Poor	Poor	Good	Good	Poor
Aux. Power	Low	Low	High	Very High	Low
Capital Cost	Low	Low	High	High	Low

Operating Cost	High	High	Low	Low	Very High
Reference Plants above 500 MW	Few	Few	Many	Few	Few

4.2.4 The reasons for opting Wet limestone process:

The Wet Limestone process is selected for SCCL (2X600 MW) Stage-I for the following reasons:

- i. Ability to achieve high desulphurization efficiency (removal efficiency is above 95%)
- ii. High Dust removal as a co-benefit.
- iii. High reagent utilization factor (sorbent utilisation is good)
- iv. Reagent material (limestone) used by the process is plentiful and readily available.
- v. Large number of reference plants.
- vi. Maturity of technology involving minimum commercial risks and large number of suppliers resulting in enhanced competition.

4.2.5 Lime stone requirement for STPP

The daily requirement of limestone for plant shall be approximately 650 ton at100% plant load factor. The lime stone requirement is indicated in table below for 100 %, 90 %, 80 % and 70 % plant load factor.

PLF	100%	90%	80%	70%	
Lime stone	650	585	520	455	
requirement in					-
Ton/Day	1		4		

4.2.6 Additional auxiliary consumption for FGD

The uninterrupted electrical power requirement shall be met through three voltage levels i.e. 11 kV. 3.3kV & 0.415 kV which are already adopted in the existing system of Stage-I for feeding power to the plant auxiliaries.

The total connected load expected for proposed FGD system will be around 15.0 -18.0 MW for 600 MW unit. However, the running loads will be around 9.0 MW for 600 MW unit. The auxiliary power consumption for introduction of FGD would contribute to increase in plant auxiliary consumption by 1.5%.

Serial No Cost Head Value in Lakhs 1 Supply 30556.63 2 Spares 1527.83 3 Type Test charges 8.63 4 Freight & Insurance 1283.38 5 Civil 9136.34 6 Structural 540.92 7 6111.33 Erection & commissioning 8 Training 10.00 9 System Integration 23.39 Subtotal 49198.45 10 GST 8855.72 11 Work cost including GST 58054.17 12 Contingency @3% 1741.63 13 IDC Including FC 4736.95 Grand total 64532.75

4.2.7 Cost Estimate For Installation Of Flue Gas Desulfurization (FGD) System The estimated head wise cost for FGD system is given in the table below:

The quarter wise phasing of the expenditure from 2019-20 to 2021-22 for FGD system is given in Clause no 4.00.00 of Chapter No -13 of financial analysis of detailed project report (DPR) for FGD system which is attached as **Appendix B**.

4.2.8 Summary of proposal for FGD:

- The Wet Limestone process is selected for SCCL (2X600 MW) for flue gas desulphurization.
- Estimated cost for installation of FGD in Singareni TPP (2 X 600 MW) will be 645.33
 Crores (including IDC)
- Time for completion: 27 MONTHS (after placement of order).
- Expected FY for commissioning of FGD: 2C21-22.
- The interest rate considered for IDC calculation is 9.46%
- Increase in plant auxiliary consumption: 1.5%
- Lime stone consumption: Approximate 65C ton at 100% plant load factor depending on sulphur content of coal.
- The estimated impact of the FGD installation in the fixed charge is 12 Paise/Kwh.
- The estimated impact of the FGD installation in the variable charge is 4 Paise/Kwh .

4.3 Capital investment for NOx compliance:

4.3.1 Preamble:

STPP units (2X600 MW) of SCCL was commissioned in the year 2016. The Boilers of the units were originally designed for NOx level of 750 mg/Nm³. The measured value of NO_x is found to be almost near to the designed value. However, as per the Gazette notification dated 15.12.2015 the NOx level has to be reduced to 300 mg/Nm³.

NOx mitigation can be approached in three different ways for this plant.

- In-furnace modifications like providing OFA, EOFA and Horizontal offset air system depending on the boiler capacity
- SNCR (Selective Non Catalytic Reduction)
- SCR (Selective Catalytic Reduction)

In furnace modifications do not require chemical treatment by reagents and therefore is a cost-effective measure compared to other methods. Moreover, original equipment manufacturer (OEM) also specified this methodology for reduction of NOx level. Accordingly, Combustion Modification is to be undertaken in both units of STPP to reduce the NOx to the desired level.

In-furnace modification produces staged combustion by diverting a portion of the secondary air above the firing zone, which in turn reduces the amount of available oxygen in the main combustion zone, where NOx is mostly generated.

It is stated that combustion modification is to be carried out as a part of furnace modification, which would be required to reduce the NOx generation in combustion chamber. Combustion modification consists of replacing/modification the existing wind box by new redesigned wind box and installation of separator over fire air panel along with dampers.

The objective of combustion modification is to reduce the NOx generated to the required level during the combustion in boiler without effecting the designed boiler steam and flue gas parameters at various loads, under various mills combination for the range of coals.

The letter from OEM detailing the cost of the NOx mitigation proposal is attached in Appendix C

4.3.2 Summary of proposal for NOx mitigation:

- M/s BHEL has provided the estimated cost for NOx reduction system.
- Estimated cost for installation of low NOx system would be approximately 38.00 Crores.

- Time for completion (after placement of order): 09 MONTHS considering engineering, supply and erection. However, the work recuires Unit shutdown for final attachments with the boiler which shall be planned as per the Annual Overhaul schedule of units.
- Expected FY for commissioning of low NOx system: U 1 :2020-21, U 2 : FY 2021-22

	(IN Cro	ores)				
DESCRIPTION	FY 2019- 20	FY 2020- 21	FY 2021- 22	FY 2022- 23	FY 2023- 24	Total
IN-FURNACE MODIFICATIONS FOR NOX	0	19	19	0	0	38

5 Capital investment in Critical Module

5.1 Justification

It is to state that the projected PLF during 2019-24 is around 91% as detailed in the generation planning part of the business plan. It is utmost important to keep necessary capital spares available during the coming control period for successful execution of generation plan. It is submitted that HP module, IP module, LP rotor, Generator stator, rotor and exciter are the major constituents of turbine generator assembly used for generation of electricity.

It is observed from the past experiences that when any of this equipment fails for whatever reason and order is placed for replacement of Original Equipment Manufacturer (OEM), the manufacturer requires a high lead time of around one year to supply a new one or at least four months time for refurbishment.

The high lead time is attributable to the fact that OEM imports the input materials necessary for these modules from other countries and arrange required machining and assembling activity here. Therefore, any failures of any of these equipment are costly and needs special attention while formulating capital investment plan.

As per the power purchase agreement entered between SCCL and TSDiscoms, STPP is expected to meet the availability norms set by the regulator and full fixed charges can be claimed only after achieving the normative availability. Therefore shut down of units in the range of four months to one year will impact the cash flow of both SCCL and TSDISCOMs.

SCCL will lose due to non-recovery of full fixed charges while TSDiscoms will also loss from the arrangement of alternative power supply from the market. It is submitted that the short-term power markets are highly volatile and unpredictable. Therefore, a win-win situation may be achieved if STPP is allowed to make capital expenditures to procure the critical modules.

STPP has two similar units of 600 MW supplied by BHEL. Accordingly, it is planned to purchase one set of HP module, IP module, LP rotor, generator stator, rotor and excited assembly which would cater the need of both the units effectively.

It is submitted that major break down have been experienced recently in 600 MW BHEL sets for the following stations:

- TSGENCO faced generator rotor failure on 14.12.2018
- Similar incidents were witnessed in TNSEB, North Chennai where outage duration extended up to 6 months.
- Jindal India Thermal Power Limited in Odisha has experienced similar failure in generator.
- Unit of MS Avanta Power had witnessed generator failure which forced it to be in outage condition for 6 months.

STPP has obtained budgetary offer for the critical modules from the original equipment manufacturer i.e., BHEL. The same is enclosed in **Appendix D**.

It may please be noted from the failure history cited above that the generator stator and rotor are the most vulnerable modules and required to be purchased in the beginning years of the control period. It is also submitted that unit-I of STPP witnessed cracks in couple of LP turbine blades. Accordingly, LP turbine is required to be recognised as high problem area and LP rotor is also planned to be purchased in the initial years of coming control period. The purchase of HP module, IP module and exciter assembly is planned during 2020-2022 to distribute capital investment judiciously so that the impact of these expenditures on tariff gets minimised.

The year wise add cap proposal for purchasing the critical modules are given below:

(In INR Crores)

Critical modules	Financial Year	Total

	2019-20	2020-21	2021-22	
HP module	0.00	46.51	0.00	46.51
IP module	0.00	0.00	53.82	53.82
LP rotor	25.20	0.00	0.00	25.20
Generator stator	63.00	0.00	0.00	63.00
Generator rotor	38.33	0.00	0.00	38.33
Exciter assembly	0.00	22.05	0.00	22.05
Total	126.53	68.56	53.82	248.91

The above cost are quoted by OEM Ex works basis and the associated taxes, duties and transportation cost needs to be incurred to bring the above items in the plant.

Therefore, it is required to add freight and GST to arrive at final cost. The final cost of the module is computed with a freight @ 3% and IGST @ 18% of ex work quoted price.

It is to further state that the capital expenditure approved on account of initial spare as per the Hon'ble TSERC order dated 17.06.2017 was 168.40 Crore. This amount was less than the ceiling of 4% of cost of Plant and Machinery. It is to submit that Hon'ble TSERC has adopted CERC regulation 2014 for determination of tariff for STPP. As per Regulation 13 of the CERC (Terms and Conditions of Tariff) Regulations, 2014, ceiling norm of initial spares is 4.0% of the cost of Plant and Machinery. The commission has observed the following in respect of initial spare in STPP's tariff order dated 19.06.2017:

"3.17 INITIAL SPARES

Commission's Analysis and Ruling

3.17.1 Regulation 13 of the CERC (Terms and Conditions of Tariff) Regulations, 2014 specifies the ceiling norm of initial spares as 4.0% of the cost of Plant and Machinery. In reply to a specific query of the Commission, SCCL submitted the total amount of spares included in the capital cost as Rs. 168.40 Crore. The Commission observes that the spares of Rs. 168.40 Crore amounts to 2.50% of the GFA of Rs. 6730.42 Crore under the asset class Plant & Machinery. Hence, the total spares are well within the ceiling limit" It is also to submit before the Hon'ble commission that the TSERC generation tariff regulation 2019 also provides the following norm in respect of initial spare: "7.17. The capital cost may include initial spares capitalised as a percentage of the plant and machinery cost up to the Cut-Off Date, subject to the following ceiling norms: -

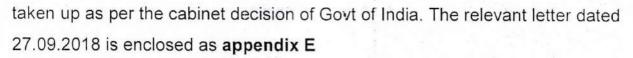
Coal based Generating Stations: 4%

Accordingly, the hon'ble commission is requested to allow the expenditures for proposed modules .These modules will definitely improve the plant availability not only for the coming control period but for the entire life of the plant.

5.2 Detailed Proposal for capital modules

Final summary of price estimation of the critical modules along with the schedule of capitalisation is given below:

(In	INR	Crores)


Critical modules	Financial Y	Financial Year						
Chical modules	2019-20	2020-21	2021-22	_ Total				
HP module	0.00	56.28	0.00	56.28				
IP module	0.00	0.00	65.12	65.12				
LP rotor	30.49	0.00	0.00	30.49				
Generator stator	76.23	0.00	0.00	76.23				
Generator rotor	46.38	0.00	0.00	46.38				
Exciter assembly	0.00	26.68	0.00	26.68				
Total	153.10	82.96	65.12	301.18				

6 Capital Investment in Railway Works:

6.1 Justification

It is to submit that the railway siding work was commissioned during the financial Year 2018-19. Most of the coal required for power generation is now received at the project site through railway mode. At present, the railway locos are running with diesel engines and manually managed signalling system. Railway authorities have advised to arrange for overhead electrification system along with necessary signalling and telecommunication works to ensure safe running of railway wagons. It is to submit that the railway electrification will be

It is to kindly state that The S&T (Signalling & Telecommunication) work is required due to following reasons:

- STPP siding consists three numbers yards (SRP-CHP, SRP-OCP and STPP).
- 2. Single track-line is only provided for movement in-between the yards.
- Loading arrangements are being planned at two locations i.e., SRP-CHP and SRP-OCP.
- 4. For 2x600 MW: -
 - 6 coal load rakes and 6 empty rakes move on the track-line on daily basis.
 - Fuel oil rake is expected once in a fortnight.
 - Fly-ash evacuation is also planned from STPP through rakes.
- 5. After addition of 1x800 MW, the traffic increases further.
- Railways have deployed rakes for transport of coal and are operating movement of rolling stock. Railways designated track speed as 50 KMPH.
- 7. Operation of so many rakes in a short distance requires higher efficiency and to ensure safety, S&T is recommended to avoid human error.
- 8. S&T enables optimum utilisation of the track structure with minimum man-power and interference.
- Railways further opined that as main line is provided with S&T, provision of S&T in STPP yard will enable smooth operation of rolling stock avoiding accidents and ensures safety.
- 10. Due to implementation of this lot of man-hour and expenditure will be saved.

M/s Rites Ltd was the consultant for railway siding work for STPP. M/s Rites prepared detailed report for overhead electrification and telecommunication work providing the detail scope and cost estimation. It is expected to finish electrification and signalling work by the financial year 2021-22.

It is to state that some of the associated works related to construction of railway siding system such as construction of drainage system along the railway track is also planned in the coming control period as per the original drawing.

It is stated that post commercial operation, some incidents of wagons derailment was observed during operation of railway system. It is also planned to get special tools and capital spares related to railway system to mitigate such emergency situation.

Accordingly, a comprehensive capitalization plan for railway siding is prepared for the approval of the Hon'ble commission.

6.2 detailed proposal

The detailed proposal for railway works is placed below:

SI.No	Name of Investment	Year in w use	hich propos	sed to put to	Total (2019-	Justification
		2019-20	2020-21	2021-22	22)	
1	Casting & fixing of boundary pillars along the railway tracks	17.11			17.11	To prevent encroachment in acquired land of railway track area.
2	Three numbers 120T in motion weigh bridges and associated civil works	91.40	-	-	91.40	These are required for weighing coal, fly ash & oil carried by rail wagons.

3	Overhead		<	iner gess		The scope of this
	Electrification (OHE) works	200.00	2C0.00	4,100.00	4,500.00	work was included in detailed project
						report (DPR). The
*						delay in awarding the
e				1.13		contract is due to
						land acquisition issues.
4	Signalling &	450.00	450.00	3,860.00	4760.00	The scope of this
	Telecommunication	100.00		0,000.00	1100.00	work was included in
	(S&T) works					detailed project
	including civil works					report (DPR). The
			1			delay in awarding the contract is due to
	The second		13			land acquisition
			3.) 17		N.	issues.
5	Re-organisation of	350.00	150.00	-	500.00	Some village roads
	village roads along			4		got blocked by
	the track-line,		1			construction of plant
*	construction of					railway line. So re-
	walk-ways & foot					organisation of
	bridges, misc. and		. · ·			village roads are required for public
	unforeseen					convenience.
6	Drains along	1000.00	650.00	-	1,650.00	The proposed drains
	railway track					are required to be
					1	constructed as per
						approved design of railway track.
7	Rerailing tools	85.00	-	-	85.00	These tools are
•						required for re-railing
						of derailed railway
				į		wagons/engine.
8	Inspection road along track line	500.0C	500.00	-	1000.00	
			-			

9	Capital spares for railway track: Sleepers and rails		500.00	-	500.00	These spares are required to replace damaged sleepers and rails as a result of unforeseen
	subtotal main railway	2,693.51	2,450.00	7,960.00	13,103.51	derailment.

7 Capital Investment In erection work in Main Plant:

7.1 Justification:

The requirement of capital works especially of the nature of erection /civil work inside the main plant area is reviewed. It is found that several expenditures such as construction of watch towers along the boundary wall and parking shed near CISF office are required from security point of view.

It is to submit that some of the mandatory works as per the factories act 1948 such as provision for creche and rest hall and construction of pit for hazardous waste shall be taken up in the upcoming control period.

It is also observed that the movement of trucks carrying bottom ash near weigh bridge area was not smooth due to the lack of parking yard for trucks. Accordingly, a parking lot for trucks is proposed near main gate area. This is also expected to reduce occurrence of accidents near main gate area.

It is to state that the plant soil is of black cotton type which lacks adequate strength to support movement of heavy vehicles specially during rainy season. It is planned to construct RCC flooring near High concentrated slurry disposal system (HCSD) area, stacker reclaimer area and IDCT area where movement of heavy vehicles were observed during past years of operation.

It is stated that the drainage and sewage system of main plant area was also reviewed. It is found that some of the necessary works like connecting outer point of BOP & BTG drains up to peripheral compound wall, connecting plant sewage pits to sewage treatment plant ,constructing RCC drain across fly ash road are to be taken up in the control period 2019-24.

Some additional roads and bridges are also required to be constructed to facilitate inspection to important plant facilities such as reservoir, Ash dyke and to provide for temporary approaches for plantation activities.

Accordingly, a comprehensive capitalization plan for main plant civil work is prepared for the approval of the Hon'ble commission.

7.2 detailed proposal

The detail proposal for erection work in main plant is placed below:

SI.No.	Name of Investment	Year in w use	Total (2019-	Justification		
		2019-20	2020-21	2021-22	22)	
1	Watch towers and road along boundary wall	160.00	-		160.00	CISF is deployed to ensure plant security. The proposed expenditure is as per their recommendation to make proper arrangement for security.
2	Parking shed at CISF time office	95.00			95.00	CISF is deployed to ensure plant security. The proposed expenditure is as per their recommendation to make prope arrangement fo security.

3	Construction of	50.00	50.00	 100.00	The facility is
	creche and rest hall				required to be provided as per Factories Act 1948.
4	Construction of shed for lube oil barrels, RCC pit for hazardous waste	50.00	50.00	100.00	The facility is required to be provided as per Factories Act 1948.
5	Ash trucks parking yards at ash weighbridge near main gate	50.00	50.00	100.00	This work is required to be taken up to avoid stuck up of trucks at plant gate during entering or exiting plant premise.
6	CC flooring around HCSD silo area	115.00		115.00	The plant soil is of black cotton type which are clayey in nature. The vehicle
					movements during monsoon season over this black soil is very difficult due to its sticky nature. Accordingly, CC flooring around
					HCSD silo area is required to maintain smooth movement of vehicles even in rainy season.
7	Widening of CC platforms and roads around IDCT	400.00	186.00	586.00	The plant soil is of black cotton type which are clayey in nature. The vehicle movements during monsoon season over this black soil is very difficult due

20 | 1 _ 3 g e

8	CC Roads					to its sticky nature. Accordingly, widening of CC platforms and roads around IDCT area is required to maintain smooth movement of vehicles even in rainy season.
	around Stacker Reclaimer	300.00	400.00	300.00	1,000.00	black cotton type which are clayey in nature. The vehicle movements during monsoon season over this black soil is very difficult due to its sticky nature. Accordingly, roads around stacker reclaimer is required to maintain smooth movement of vehicles even in rainy season.
9	Paving with chequered tiles under pipe & cable rack areas and below coal gantries	500.00	500.00	500.00	1,500.00	Required to prevent vegetation growth and to ensure ease in equipment access. Also prevents fire hazards.

10	RCC drain along	-	162.00	•	162.00	The RCC drain will
	fly ash transport					prevent stagnation
	road				1.1	of storm water
						inside the
		1				compound wall of
						STPP.
			A			0111.
					1	
		1.1				
		2.2	· · · · · · ·			
11	Extension of BOP		300.00	-	300.00	Kucha drains are
	& BTG drains up					existing from the
	to peripheral	12.014				outfall point of
	compound wall			*	2000	BTG & BOP drains
	compound wait					
						up to the drains at
			1.0		1.15	outer periphery of
	1. S		1.15		1.1.1.1.1.1	compound wall.
	1 K	19 Jac				These kucha
					11.1	drains were
			1.1			conducive for
					1 - 2 5	vegetation growth
					i berter	and resultant earth
			2010			collapse. To
						prohibit such
			12.1			occurrence, the
					· · · · · · · · · · · · · · · · · · ·	BTG & BOP drain
					1.1	outfalls need to be
*						connected to the
						drains at
						peripheral
						compound wall.
12	Chambers and	60.00	60.00	-	120.00	To avoid wate
105533	dewatering		+5			stagnation inside
	pumps in main					the main plan
	plant area					area specially
	prom arou					during rainy
						season.
13	Sources	60.00	40.00		100.00	Required to
15	Sewage pits	00.00	40.00		100.00	connect the
	(pumps) / pipe				1.1.1	
	line from BTG					sewage system o
	area to STP					BTG to sewage
*		56				treatment plant.

30

14	Metal road on reservoir bund B.T. over inspection road	63.00 150.00	- 150.00	63.00 300.00	This is required for inspection of reservoir bund especially during rainy season. Required for inspection of along
	along periphery compound wall from Ash dyke to Rly bridge across Rasulpalli vagu (3.60 KM) and B.T. road over reservoir				peripheral compound wall and reservoir.
16	Making approaches to plantation at various locations	100.00	50.00	150.00	The approach road is required for inspecting as well as attending plantation activity
•					spread across entire plant area.
17	Bridge over diverted nala near CISF time office	248.00		248.00	The diversion of nala was done to avoid the over flowing of water from nala to enter into main plant area. The construction of bridge over nala was taken up to provide necessary road access.
18	Work stations , furniture's and portico in Administration building and service building.	290.00	100.00	390.00	The managers & staff of the plant who oversee the power generating activity sit in the administrative building & service building. The required

23 | Page

3

Sub total plant			full functionality of admin & service building.
			expenditure is to construct work stations to achieve

8 Capital Investment in Township Civil Works

8.1 Justification

The STPP township was put to use in the last control period. The more people occupied the township, the more the problem of staying inside the township surfaced. It is found that the residents of STPP have to go to nearby market situated at Jaipur which is at least 5 Km away from the township area to get even an ordinary item .

The lack of bare minimum facilities to live inside the township was represented by various employee unions during the past two years. Accordingly,SCCL decided to construct shopping complex, sports complex and other necessary infrastructure to arrange for modest living inside the township area. These buildings will be constructed and will be put to use during 2019-2022.

The development works for existing township like providing roads and drains ,integrating water supply works ,providing fencing around the park, providing protected parking for vehicles and creating club infrastructure will also be taken up in the coming control period.

Extension of armoury building of CISF was required from security point of view. Rain harvesting structures has to be built as per MoEF notification.

Accordingly, a comprehensive capitalization plan for township civil work is prepared for the approval of the Hon'ble commission.

8.2 detailed proposal

The summary of the proposal is placed below:

SI.No.	Name of	Year in which proposed to			Total	Justification
	Investment	put to us 2019- 20	se 2020-21	2021-22	(2019- 22)	
1	Construction of public buildings like shopping complex, sports complex and other necessary infrastructures.	250.00	300.00	364.00	914.00	This is to be constructed to support modest living by persons inside the township.
2	Township Development works like construction of roads, drains & water supply in township, providing electric overhead lines, providing fencing around parks, providing protected parking for vehicles and creating club infrastructure.	315.80	400.00	250.00	965.80	This is to be constructed to support modest living of persons inside the township.
3	Electrification and furniture for CISF.	25.00			25.00	CISF is deployed to ensure plant security. The proposed expenditure is for arranging moderate living by CISF personnel

4	Extension of	60.00	40.00	-	100.00	CISF is deployed
	armoury building					to ensure plant
	for CISF, CC	•				security. The
	pavement and rest			1		proposed
	sheds					expenditure is as
			Se			per their
	2			1		recommendation
						to make proper
		4		1		arrangement for
			1.1.1	1.1.1		security.
5	Parade ground,	30.00	20.00		50.00	CISF is deployed
	Stage and roads			14 1		to ensure plant
	for CISF			1		security. The
			1.20	E.	1 - E	proposed
					1	expenditure is as
					an tha an	per their
						recommendation
		•				to make proper
						arrangement for
0	Madification		100.00		100.00	security.
6	Modification to	-	100.00	-	100.00	A hall big enough
	open shed at					to conduct public
	Guest house into					gathering with 50
	AC Hall					people or more
•					1	during adverse
						weather condition
						is not there in
						STPP. Therefore
						the open shed of
		1.1			11.1	guest house shal
						be converted to
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1.00	AC hall. The hal
	1					can be used to
					1	celebrate days o
	E2 0. 2					national
*						importance.
7	Connection of	-	60.00	-	60.00	It is required to
	sanitary system of					connect sanitar
	Township to STP		11 - 1			system o
						township to
						sewage

	8.5					treatment plant for effective treatment of township sewage.
8	Rain harvesting structures	100.00	100.00		200.00	As per MoEF guidelines, the rain harvesting structure has to be constructed.
	Sub total township	780.80	1,020.00	614.00	2,414.80	

9 Non-scheme capital expenditure

It is to submit before the hon'ble commission that accounting of Property, Plant and equipment is required to be made as per Ind AS 16.

As per this accounting standard, the cost of an item of property, Plant and Equipment shall be recognised as an asset if

- a) It is probable that future economic benefits associated with the item will flow to the entity; and
- b) The cost of the item can be measured reliably.

However, due to practical difficulty in complying with the robust mechanism for identifying asset as laid out in Ind AS 16, it is very difficult to estimate expenditures in capital assets in future periods as per this standard.

Accordingly, STPP crave leave before this Hon'ble commission to submit the actual capitalisation identified by applying AS 16 during Mid term review and End of control period review for consideration of the commission.

10 Financing Plan:

STPP plans to fund the proposed capital investment through equity and domestic borrowing. The debt: equity ratio is proposed as 70: 30 for the total capital expenditure.

11 The complete proposal

The capital investment plan is given below:

Capital Expenditure scheme:

(IN	Crores)				a , 17		
S N	DESCRIPTION	FY 2019-20	FY 2020-21	FY 2021-22	FY 2022- 23	FY 2023- 24	Total
1	FLUE GAS DE- SULPHURISATION SYSTEM (FGD)	0	0	645.32	0	0	645.32
2	IN-FURNACE MODIFICATIONS FOR NOX MITIGATION	0	19	19	0	0	38
3	OPERATION & MAINTENANCE MODULES	153.10	82.95	65.12	0	0	301.18
4	RAILWAY WORKS	26.94	24.50	79.60	0	0	131.03
5	ERECTION WORKS IN MAIN PLANT	26.91	20.98	8.00	0	0	55.89
6	TOWNSHIP CIVIL WORKS	7.81	10.20	6.14	0	0	24.15
	Total	214.75	157.63	823.18	0	0	1195.57

Non-scheme capital expenditure

STPP crave leave before this Hon'ble commission to submit the actual capitalisation identified as per AS 16 during Mid-term review and End of control period review for consideration of the commission.

12 The spill over items:

The audited capital expenditure for the project upto 30.09.2018 was 8461.94 Crore which was submitted before the commission vide submission dated 28.11.2018. A copy of the same is attached as **Appendix F**. SCCL also projected 360.62 Crs of capital expenditure from 01.10.2018 to 31.03.2018 which is subjected to finalisation of accounts for the financial year 2018-19.

However, it is kindly stated that some of these expenditures may be spilled to the next control period, ie beyond 31.03.2019. The estimated spill over items along with the reasoning is furnished in **Appendix G.** The hon'ble commission is requested to consider the spill over of this capital expenditures in the control period 2019-24 based on actuals and to consider the same for determination of multi-year tariff 2019-24.

13 Prayer before Hon'ble commission

SCCL prays to the Hon'ble Commission that it may be pleased to:

a. Consider the Capital Investment Plan of STPP during 2019-24 for approval as per regulation 7(b),7.19 and 27 of terms and condition of generation tariff regulation 2019.

b. Grant leave to submit the actual capitalisation identified as per AS 16 during Mid-term review and End of control period review for consideration of the commission

c. Condone any inadvertent omissions/ errors/ shortcomings and permit SCCL to add/ change/ modify/ alter this filing and make further submissions as may be required at a future date;

SUPPORTING APPENDIXES TO CAPITAL INVESTMENT PLAN

6

Index

Item	Page No (Cont)
Appendix A: Letter dated 23.01.2019 addressed to Ministry of Power in respect to FGD system	39-41
Appendix B: DPR for FGD system prepared by M/s NTPC Ltd	42-144
Appendix C: The letter from OEM detailing the cost of the NOx mitigation proposal	145
Appendix D : budgetary offer for the critical modules from the original equipment manufacturer i.e., BHEL	146-147
Appendix E : The letter dated 27.09.2018 conveying the cabinet decision of Govt of India for railway electrification .	148-150
Appendix F: Audited capital expenditure for the project upto 30.09.2018	151-153
Appendix G : The estimated spill over items along with the reasoning is furnished in.	154

APPENDIX-A. THE SINGARENI COLLIERIES COMPANY LIMITED OF CAPITAL INVESTMENT

(A GOVERNMENT COMPANY) **Registered** Office

PLAN) Kothagudem Collieries (P.O) - 507 101, Bhadradri Kothagudem Dist., Telangana State CIN: U10102TS1920SGC000571

Environment Dept., 2X600 MW, STPP

Pegadapally(V), Jaipur(M) - 504216, Dist. Mancherial, Telangana State.

Ref: STPP/O&M/ENV/19/38/ 100

Date: 23.01.2019

1

33

To The Secretary, Ministry of Power Shram Shakti Bhawan Rafi Marg, New Delhi - 110001

Sir,

- Sub: Compliance of SO2 emission limit notified vide MoEF&CC Notification S.O. No. 3305 (E), dated 07.12.2015 - Request for time extension for installation of FGD in 2X600 MW Coal Based Singareni Thermal Power Plant (STPP), Telangana State- Reg.,
- Ref.: 1. EC Lr. No. J-13012/88/2008-IA.II (T), dated 27.12.2010
 - 2. CPCB Lr.No. B-33014/07/2017-18/IPC-II/TPP/14682, Dt.11.12.2017
 - 3. CPCB , Divisional Head, IPC-II mail dated: 20.08.2018.
 - 4. Lr. No. STPP/ENV/637/1896, Dated:04.09.2018.
 - 5. CPCB Themral Plant review meeting, email dated:05.12.2018.
 - 6. Lr. No. STPP/O&M/Env./18/38/1230,Dt.10.12.2018.
 - 7. CPCB Lr.No.B-33014/07/2018/IPC-II/TPP/14853, Dt.07.01.2019.

The Singareni Collieries Company Limited(SCCL) is Government Company having coal mining operations spread over six Districts of Telangana State. SCCL is also operating 1200 MW STPP (2X600MW, Stage-1), near Pegadapally (V), Jaipur (M), Mancherial (Dist.) in Telangana State and is meeting the power requirements of the State. The Commercial Operation Date (COD) has been achieved for Unit-I (1X600 MW) and Unit-II (1X600 MW) on 25.09.2016 and 02.12.2016 respectively.

. MoEF&CC accorded Environment Clearance for the 2X600 MW, Stage-I, STPP vide letter cited at (1). It has been stipulated at specific condition no. A (xiv) that provision for installation of FGD shall be provided for future use.

Subsequently, CPCB vide letter cited at (2), directed STPP to take various measures for complying with MoEF&CC Notification S.O. No. 3305 (E), dated 07.12.2015 wherein time lines were stipulated for installation of pollution control equipment. It was stipulated for installing FGD by September 2019 and December 2019 in unit 1 &. 2 respectively so as to comply with SO2 emission limit.

As per CPCB directions, STPP is complying with the norms stipulated for control of PM emissions, Mercury (Hg) and specific water consumption.

As regards installation of FGD for complying with SO2 emission norms, SCCL awarded the work of preparation of Feasibility Report (FR) and Detailed Project report (DPR) for installation of FGD at 2x600MW STPP to M/s NTPC Ltd. M/s NTPC has prepared DPR and submitted the same to SCCL and the necessary approvals are in under process.

It is to bring to your kind notice that floating of tender, award of work, erection & commissioning of FGD will take at least 36 months. Keeping these aspects in view, STPP submitted a letter to MoEF&CC and CPCB vide letter cited at (4) requesting time extension for FGD installation from December-2019 to December-2022.

CPCB conducted a meeting with all the thermal power plants on 05.12.2018 to review the compliance of norms stipulated vide its Notification, S.O. No. 3305 (E), dated 07.12.2015. On request of STPP for time extension for installation of FGD, CPCB authorities advised to approach Ministry of Power (MoP) for obtaining necessary permission. Accordingly, STPP submitted a letter to Secretary, MoP vide letter cited at (6) with a request for extension of time for FGD installation.

Meanwhile, vide letter cited at (7), CPCB informed to STPP as follows:

"STPP has been directed to comply with SO₂ emission limit by the same timeline which was proposed by the Ministry of Power vide letter No. FU-1/2017-IPC dated 13.10.2017 to MoEF&CC and hence the request made by STPP regarding Stage-I (Unit-1&2) may not be considered".

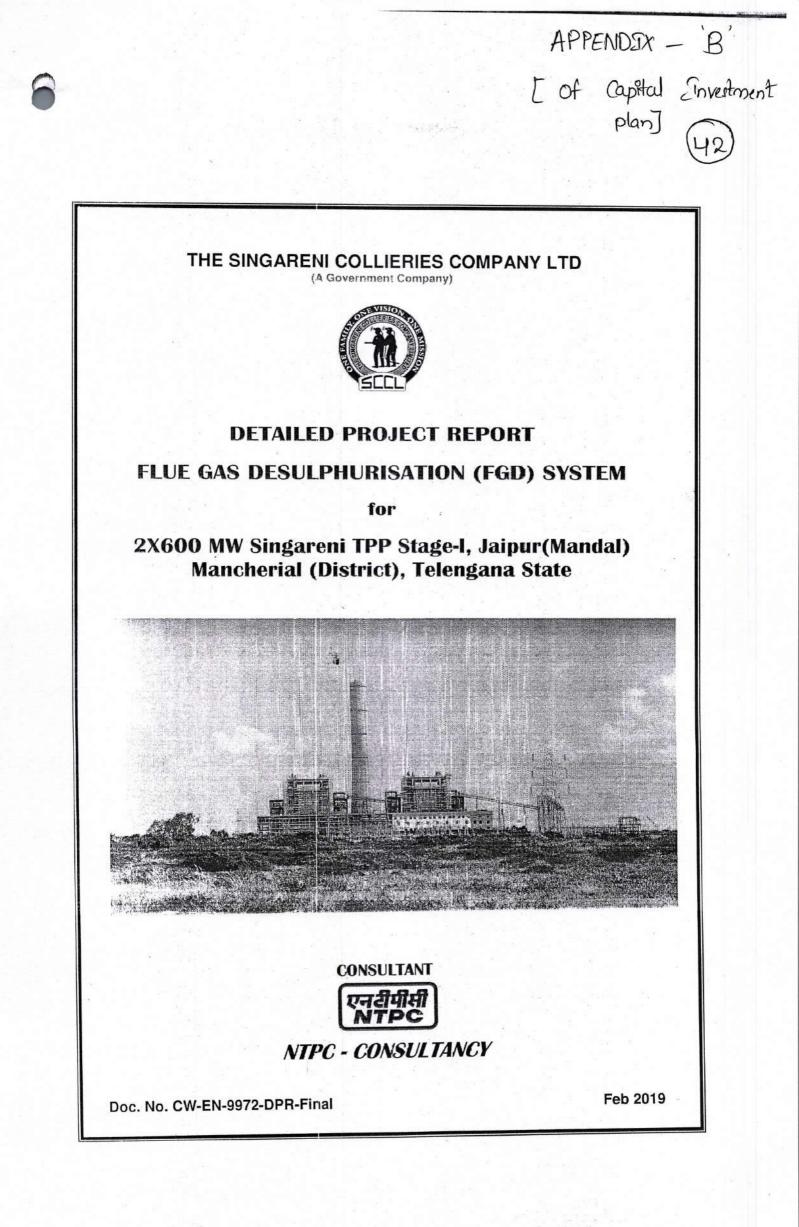
As STPP has initiated the process of installation of FGD, it is requested to kindly arrange to consider the request of time extension for instalaltion of FGD for 2x600MW STPP, Stage-I (Unit 1&2) from December 2019 to December 2022. It is learnt that your good offices have accorded extension of time lines for FGD installation in the nearby power plant of Telangana State. Hence, similar extension may kindly be accorded to STPP also for completing the installation work of proposed pollution control equipment by December 2022.

STPP is pro-active in implementation of various environmental protection measures in the plant and also assures that the directions of CPCB regarding compliance of environmental norms stipulated vide its Notification, S.O. No. 3305 (E), dated 07.12.2015 will also be complied with.

Yours faithfully,

Executive Director 2x600MW,STPP

Copy to:


1. The Member Secretary (Thermal Sector),

IA Division,

Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhavan, Jor Bagh Road, Aliganj, New Delhi – 110 003.

 The Chief Engineer, Thermal Project Renovation & Modernization Division, Central Electricity Authority Sewa Bhavan, RK Puram, New Delhi-110066

- The Chairman, Central Pollution Control Board, Parivesh Bhawan,East Arjun Nagar, Delhi-110032
- The Member Secretary, Telangana State Pollution Control Board, Paryavaran Bhavan, A-III, Industrial Estate, Sanathnagar, Hyderabad-500018
- 5. Director(E&M)
- 6. Director(PP)
- 7. GM(Env.)
- 8. GM(E&M),STPP
- 9. Chief Coordinator, (PPD)/Hyd
- 10. Chief of O&M,STPP

EL MA		DET	AILED PROJECT REPORT FOR FGD	नरीपीसी VTPC
AUSE NO.		DESC	RIPTION	
			INDEX	
	CHAPTE	R	DESCRIPTION	PAGES
<	CHAPTE	R-1	RATIONALE OF FGD SYSTEM	2
	CHAPTE	R-2	PROJECT INFORMATION	2
	CHAPTE	R-3	SALIENT DESIGN DATA	4
	CHAPTE	R-4	DIFFERENT FGD PROCESSES	13
	CHAPTE	R-5	FGD SYSTEM-MECHANICAL	17
	CHAPTE	R-6	FGD SYSTEM-CIVIL	6
	CHAPTE	R-7	FGD SYSTEM-ELECTRICAL	19
	CHAPTE	R-8	FGD SYSTEM-CONTOL & INSTRUMENTATION	3
	CHAPTE	R-9	LAYOUT REQUIREMENT	2
	CHAPTE	R-10	LOW NOX BURNERS	2
	CHAPTE	R-11	LIMESTONE SOURCES	7
	CHAPTE	R-12	LIST OF PROBABLE VENDOR	1
	CHAPTE	R-13	FINANCIAL ANALYSIS	4
	CHAPTE	R-14	IMPLEMENTAION SCHEDULE	3
	CHAPTE	R-15	OPERATION & MAINTENANCE PHILOSOPHY	3
	CHAPTE	R-16	BILL OF QUANTITIES	12
	CHAPTE	R-17	RECOMMENDATIONS	1

S. S.		DETAILE	D PROJECT REPO SYSTEM	DRT FOR FGD	एनरीपीसी NTPC
CLAUSE	NO.	DESCRIPT	ION		
			CHAPTER RATIONALE OF FG		
1.00.00	The Ministry introduced suspended p India on 7th The new sta dioxide(7.3 H bringing abo thermal pow of Sulfur Dic emission (at	y of Environ The SO _x er particulate lin December 2 ndards are a (g/MWh) and out an impro- er plants. The oxide - SO2 about 70-90	FOR SO _x EMISSION ment, Forest & Clima nission limit requirem nit requirement from th 015. aimed at reducing emis d Oxide of nitrogen (4 ovement in the Ambie te technology employe & Nitrogen Oxide - NO %) as a co-benefit.	nent along with NC ermal power plant vie ssion of PM10(0.98 k .8 kg/MWh), which w ent Air Quality (AAQ ed for the control of the Dx will also help in c	emission and de the Gazette of (g/MWh), sulphur vill in turn help in () in and around he proposed limit ontrol of mercury
	Pollutants		TPPs(Units) Installed on or before 31 st December 2003	TPPs(Units) Installed after 1 st January 2004	TPPs(Units) to be Installed after 1 st January 2017
	Particulate Matter(PM		100 mg/Nm ³	50 mg/Nm ³	30 mg/Nm ³
	Sulphur Di	oxide (SO₂)	600 mg/Nm ³ (Units smaller than 500 MVV) 200 mg/Nm ³ (For Units having capacity of 500 MVV or above)	600 mg/Nm ³ (Units smaller than 500 MW) 200 mg/Nm ³ (For Units having capacity of 500 MW or above)	
	Oxides of	Nitrogen	600 mg/Nm ³	300 mg/Nm ³ 0.03 mg/Nm ³	100 mg/Nm ³ 0.03 mg/Nm ³
	Mercury(H		0.03 mg/Nm ³		

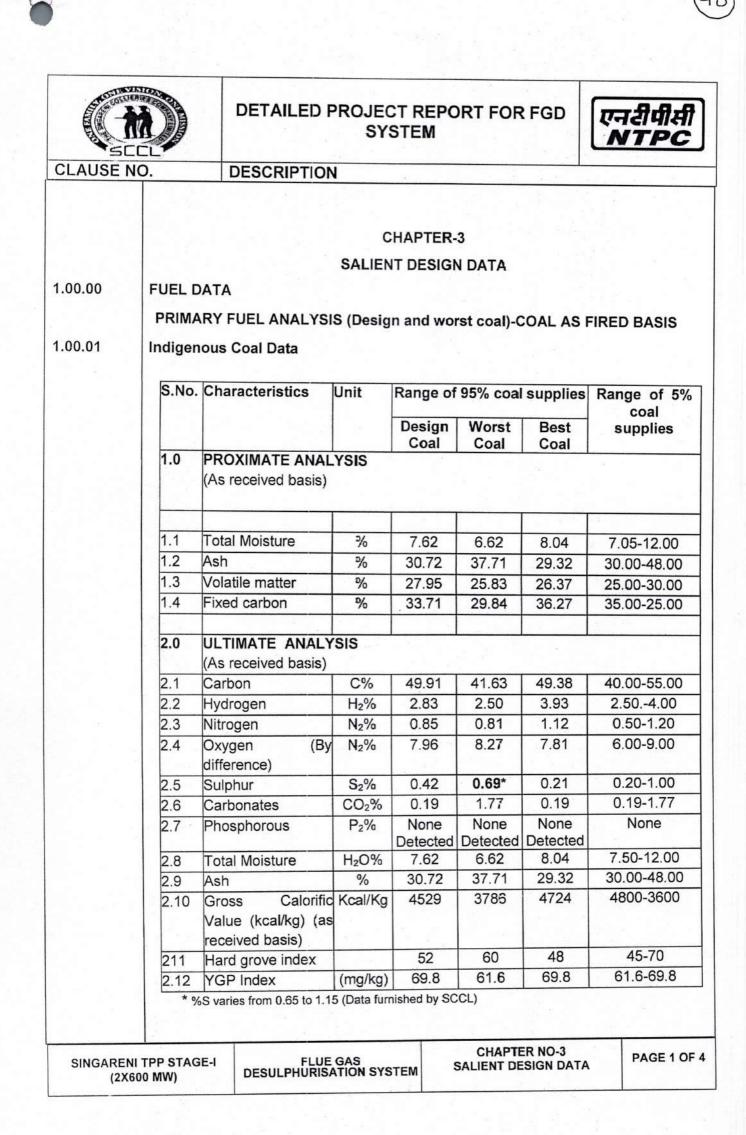
		DETAILED PROJECT R SYSTE		एनदीपीसी NTPC
CLAUSE I	NO. [DESCRIPTION		
	"All monitore Oxygen, on	ed values for SO2, NOx and I dry basis"	Particulate Matter shall b	be corrected to 6%
2.00.00	REQUIREME	INT OF FGD		
	below 200m	of SCCL (2X600 MW) come ssioned before 31 December g/Nm ³ . As reported the coal ission value, which is bey	2016, SOx emission nee based power units at SO	ed to be controlled CCL are operating
		a suitable flue gas desulphur actual SO _x emission value wel		d to be installed in
3.00.00	TARGET SO	X EMISSION VALUE FOR S	CCL	
	200mg/Nm ³ . deterioration temperature in maximun 100mg/Nm ³	ed above, the applicable SO However to take care variat in coal quality, higher Su and flow, higher plant heat ra n SO _x emission target fro (maximum) for SO _x emission ation system for SCCL.	ion in operating input paulphur content in coal, ate etc., we need to kee m SCCL. Accordingly	arameters such as higher flue gas p sufficient margin target value of
4.00.00	IMPLEMENT	ATION TARGET SCHEDULE	E FOR FGD SYSTEM	
	installation of vide its letter direct all the the 07.12.20	Consideration the technica FGD and other technologies F. No. Q-15017/40/2007-CF thermal power plants to ensu 15 notification in accordance ed 13.10.2017as well as NO _x	to meet the new emission PW dated 07.12.17 has re compliance with the r with the revised plan sub	on limit MoEF&CC directed CPCB to norms laid down in
	to be implem	as per plan the FGD system a ented within this time limit i.e.	by the Dec'2019.	
	Accordingly	present status it is not possil a letter was written by SCCI Dec'2022. (Enclosed).	ble to installed FGD sys L to CPCB & MOP for ti	stem by Dec'2019. me extension from
	NI TPP STAGE-I (600 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-1 RATIONALE OF FGD SYS	PAGE 2 OF 2 STEM

SECL
CLAUSE NO.

DETAILED PROJECT REPORT FOR FGD

DESCRIPTION

CHAPTER-2


PROJECT INFORMATION

1.00.00

PROJECT DETAILS:

SI. No.	Item	Details
a)	Place	Near Pegadapalli village, Jaipur Mandal, District Mancherial, Telangana
b)	Location	250 km (approx.) from Hyderabad and 250 km (approx.) from Nagpur
c)	District	Mancherial
d)	State	Telangana
e)	Country	India
f)	Postal Address	Singareni Thermal Power Plant, Pegadapalli, Jaipur, Telangana 504216
g)	Access by Rail	Nearest railaway station is Mancherial railway station on Nagpur-Kazipet main rail line of South Central Railway, located at a distance of about 14.6 kms.
h)	Access by Air	Nearest airport is Shamshabad Airport , Hyderabad at a distance of about 250 KM
i)	Latitude And Longitude of SCCL Thermal Power Station	The latitude and longitude of site are 18° 48' 30" to 18° 50' 35" N and 79° 34' 00" to 79° 35' 30"E respectively
j)	Dry Bulb	29.2 °C (1951 to 1980)
k)	Minimum	19.7 ºC
L		
PP STAC	GE-I FLUE G DESULPHURISAT	

		DETA	ILED PRO	DJECT REPORT FOR	FGD	एनरीपीसी NTPC
CLAUSE	NO.	DESCR	RIPTION			
	1)	Elevation at sea level	oove mean	156 m		
	m)	Maximum temp.	ambient	45.7º C		
	n)	Wind velocit	ty	Basic, per ISI 44 m/s		
	o)	Maximum intensity	Rain fall	75mm/hr		
	p)	Seismic Zor	ie .	Zone no III as IS-1893-200	02	
		siade	Unit	Lapacity	LIATE	of
		Stage	Unit	Capacity	Date	of
		Jugo	onic	Capabily		
		1			commis	ssioning
			1 11	600 MVV 600 MVV		ssioning 2016
3.01.00	FUEL Coal of SC	I SOURCE:	I II are mainly	600 MW 600 MW	commis 25.09.2 02.12.2	ssioning 2016 2016
3.01.00	FUEL Coal of SC	I SOURCE: : Coal sources CCL.	I II are mainly	600 MW 600 MW	commis 25.09.2 02.12.2	ssioning 2016 2016
3.01.00	FUEL Coal of SC	I SOURCE: : Coal sources CCL.	I II are mainly	600 MW 600 MW	commis 25.09.2 02.12.2	ssioning 2016 2016
8.00.00 8.01.00 8.02.00	FUEL Coal of SC	I SOURCE: : Coal sources CCL.	I II are mainly	600 MW 600 MW	commis 25.09.2 02.12.2	ssioning 2016 2016
3.01.00	FUEL Coal of SC	I SOURCE: : Coal sources CCL.	I II are mainly	600 MW 600 MW	commis 25.09.2 02.12.2	ssioning 2016 2016

		DETAILED P		CT REPO STEM	ORT FOR	FGD	एनरीपीसी NTPC
CLAUSE NO).	DESCRIPTION					
	3.0	ASH ANALYSIS					
1.1	3.1	Silica (SiO ₂)	%	67.36	66.11	59.966	55.00-70.00
	3.2	Alumina (Al ₂ O ₃)	%	21.28	24.48	23.756	20.00-26.00
	3.3	Iron Oxide(Fe ₂ O ₃)	%	8.11	5.57	6.854	5.00-10.00
	3.4	Titania(TiO ₂)	%	0.00	0.00	0.00	1.00-1.50
	3.5	Phosphoric Anhydride(P ₂ O ₅)	%	0.00	0.00	0.00	0.0-0.50
	3.6	Lime (CaO)	%	1.60	2.32	5.774	1.50-8.00
	3.7	Magnesia (MgO)	%	0.00	0.00	0.00	0.00-3.00
	3.8	Sulphuric Anhydride (SIO ₃)	%	0.00	0.00	0.00	0.40-0.80
	3.9	Sodium Oxide (NaO ₃)	%	0.20	0.15	0.192	0.10-0.35
	3.10	Balance Alkalies (By Difference)	%	1.45	1.37	3.46	1.25-4.00
	4.0 4.1	ASH FUSION RANG (reducing atmosphered)		1400	1380	1342	1150-1400
		Temperature (IDT)				-	
	4.2	Hemispherical temperature	°C	1400	1400	1400	1300-1400
	4.3	Flow temperature	°C	1400	1400	1400	1400-1400
SINGARENI	TPP STA	GE-I FLUE C	GAS			ER NO-3 ESIGN DATA	PAGE 2 OF

DESCI QUALITY SI. No. 1 2 3 4 5 6 7 8 9	Constituent Calcium Magnesium Sodium & Potassium Bicarbonate Chloride Sulphate Corbonate	Water Analysis as CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃	mg / litre 103 96 172 146 100
SI. No. 1 2 3 4 5 6 7 8	Constituent Calcium Magnesium Sodium & Potassium Bicarbonate Chloride Sulphate Corbonate	as CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃	103 96 172 146
SI. No. 1 2 3 4 5 6 7 8	Constituent Calcium Magnesium Sodium & Potassium Bicarbonate Chloride Sulphate Corbonate	as CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃	103 96 172 146
1 2 3 4 5 6 7 8	Calcium Magnesium Sodium & Potassium Bicarbonate Chloride Sulphate Corbonate	CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃	103 96 172 146
2 3 4 5 6 7 8	Calcium Magnesium Sodium & Potassium Bicarbonate Chloride Sulphate Corbonate	CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃	103 96 172 146
3 4 5 6 7 8	Magnesium Sodium & Potassium Bicarbonate Chloride Sulphate Corbonate	CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₃	96 172 146
3 4 5 6 7 8	Sodium & Potassium Bicarbonate Chloride Sulphate Corbonate	CaCO ₃ CaCO ₃ CaCO ₃	172 146
4 5 6 7 8	Bicarbonate Chloride Sulphate Corbonate	CaCO ₃ CaCO ₃	146
5 6 7 8	Chloride Sulphate Corbonate	CaCO ₃	
6 7 8	Sulphate Corbonate		100
7 8	Corbonate	CaCO ₃	
8			122
		CaCO ₃	Nil
9	Silica	SiO2	21
The second s	Iron	Fe	0.06
10	pH Value		7.84
11	Turbidity	NTU	5.00
12	Temperature (°C)		27.1
SI. No.	Constituent	as	mg / litre
1	Calcium	CaCO₃	515
2	Magnesium	CaCO ₃	480
			860
A STATE AND A STAT			730
			500
			610 Nil
			105
0	Iron	Fe	0.3
9		-	8.5
9 10	pH Value	- NTU	and the second sec
9 10 11 12		- NTU	8.5 25 27.1
	SI. No.	Cooling/ CW BlowSI. No.Constituent1Calcium2Magnesium3Sodium & Potassium4Bicarbonate5Chloride6Sulphate7Corbonate	Cooling/ CW Blowdown Water ArSl. No.Constituentas1CalciumCaCO32MagnesiumCaCO33Sodium & PotassiumCaCO34BicarbonateCaCO35ChlorideCaCO36SulphateCaCO37CorbonateCaCO3

(50)

DETAILED PROJECT REPORT FOR FGD SYSTEM

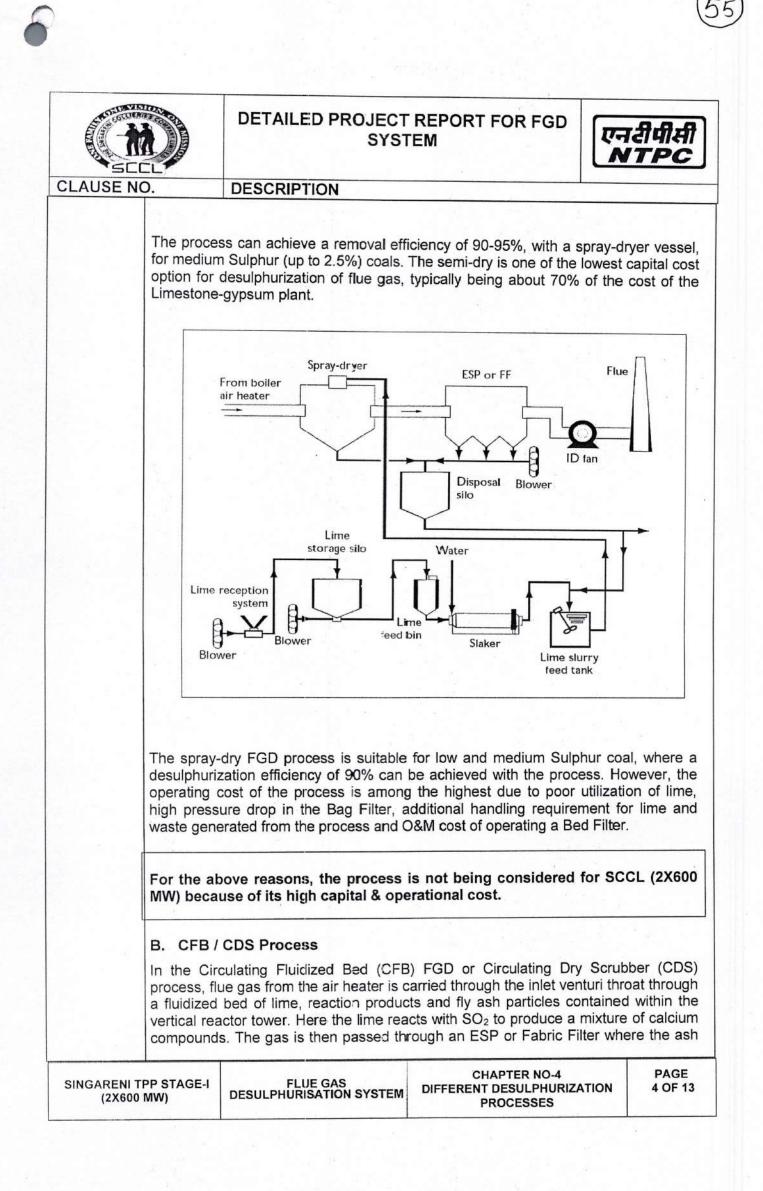
DESCRIPTION

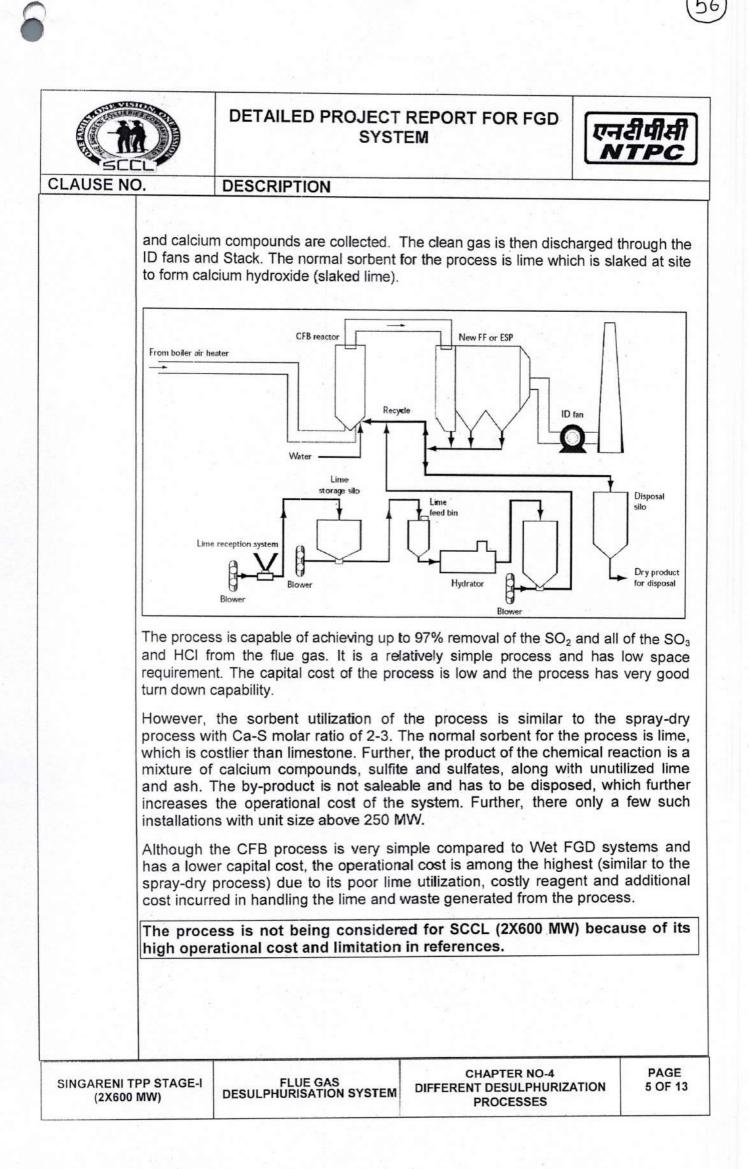
Filtered Water Analysis (Drinking Water)

SI. No.	Constituent		mg/ litre
1	Calcium	CaCO ₃	101
2	Magnesium	CaCO ₃	94
3	Sodium & Potassium	CaCO ₃	174
4	Bicarbonate	CaCO ₃	145
5	Chloride	CaCO ₃	103
6	Sulphate	CaCO ₃	122
7	Corbonate	CaCO ₃	Nil
8	Silica	SiO ₂	21.0
9	Iron	Fe	0.06
10	pH Value	-	7.88
11	Turbidity	NTU	2.17

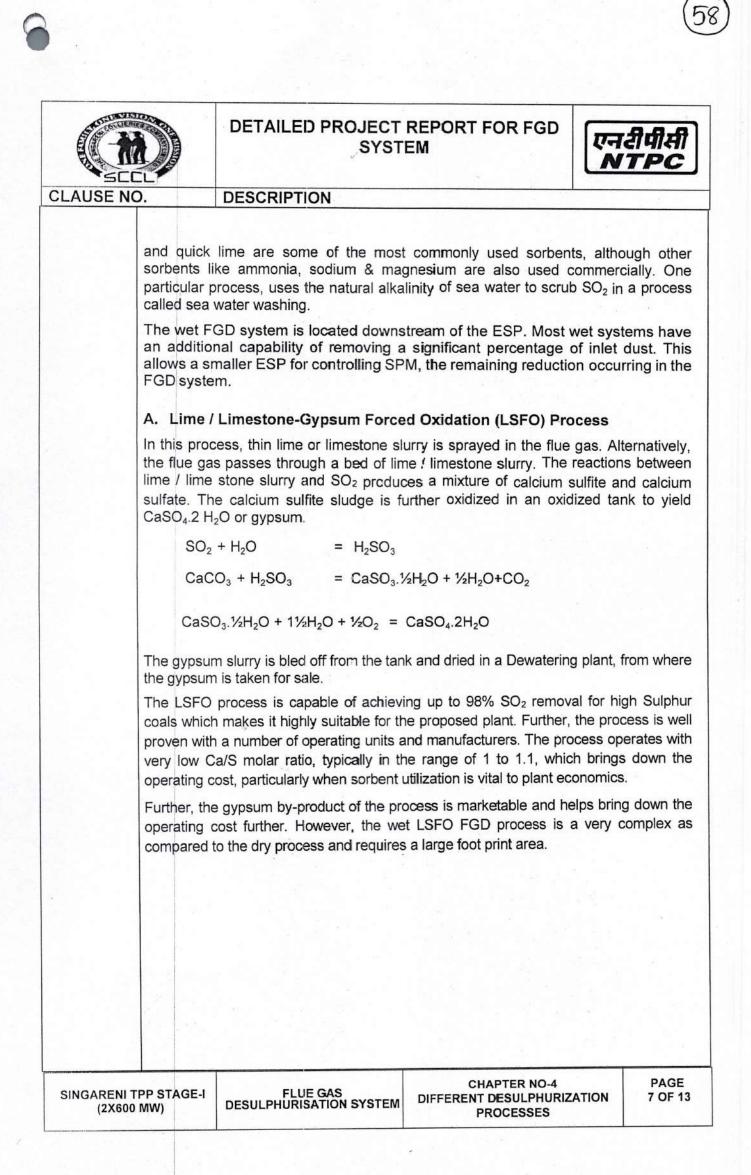
Analysis of DM Water

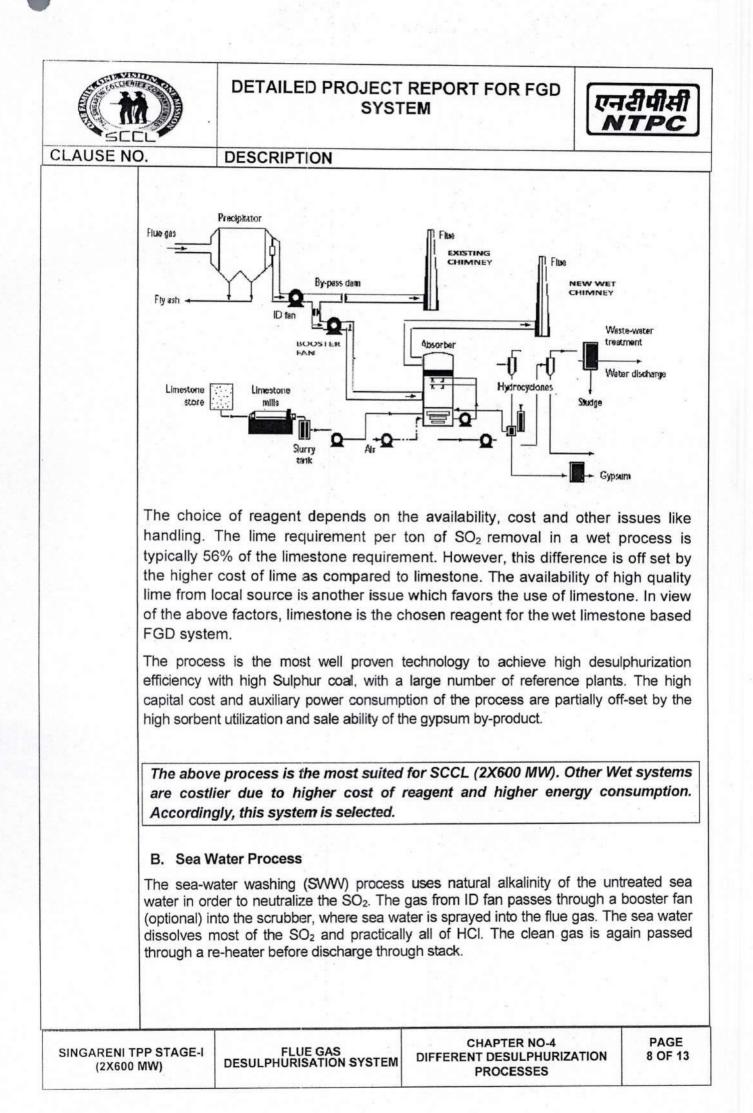
SI. No.	Characteristics		Value		
1	Silica (Max.)		0.02 ppm as Sio2		
2	Iron as Fe	Nil			
3	Total hardness	al hardness - Nil			
4	pH value		6.8 to 7.2		
5	Conductivity	-	Not more than 0.1 us//cm excluding The effects of free CO ₂		

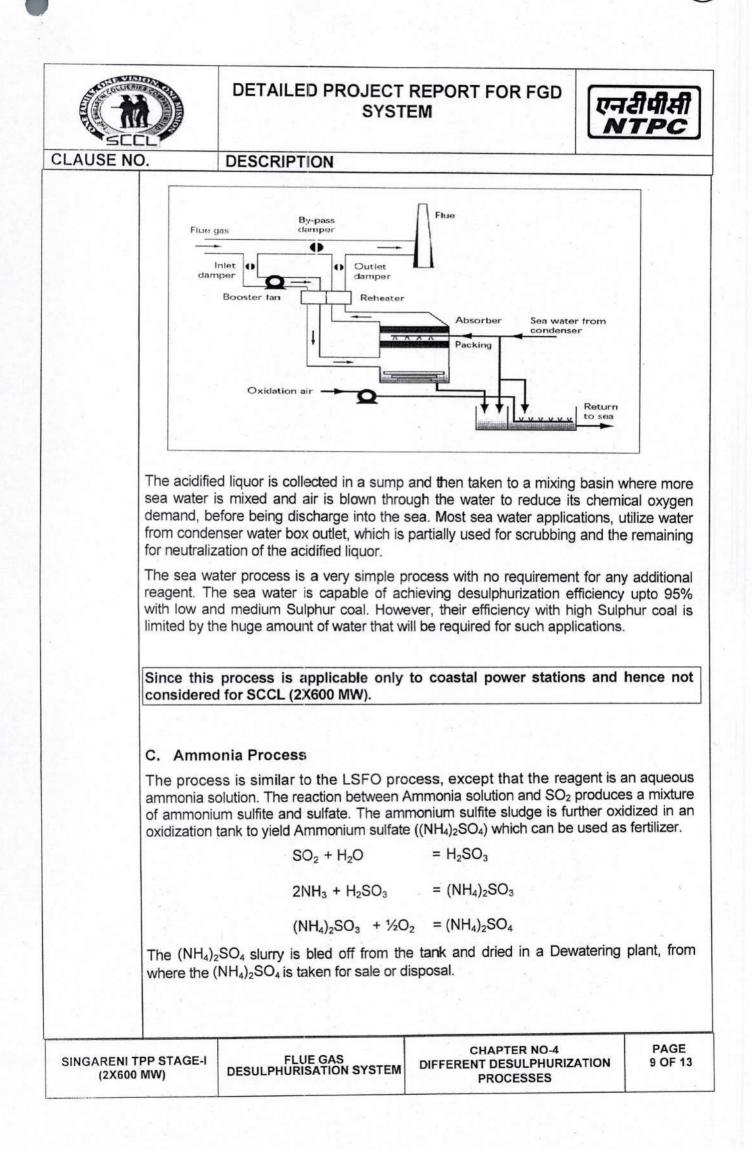

SINGARENI TPP STAGE-I (2X600 MW) FLUE GAS DESULPHURISATION SYSTEM CHAPTER NO-3 SALIENT DESIGN DATA PAGE 4 OF 4

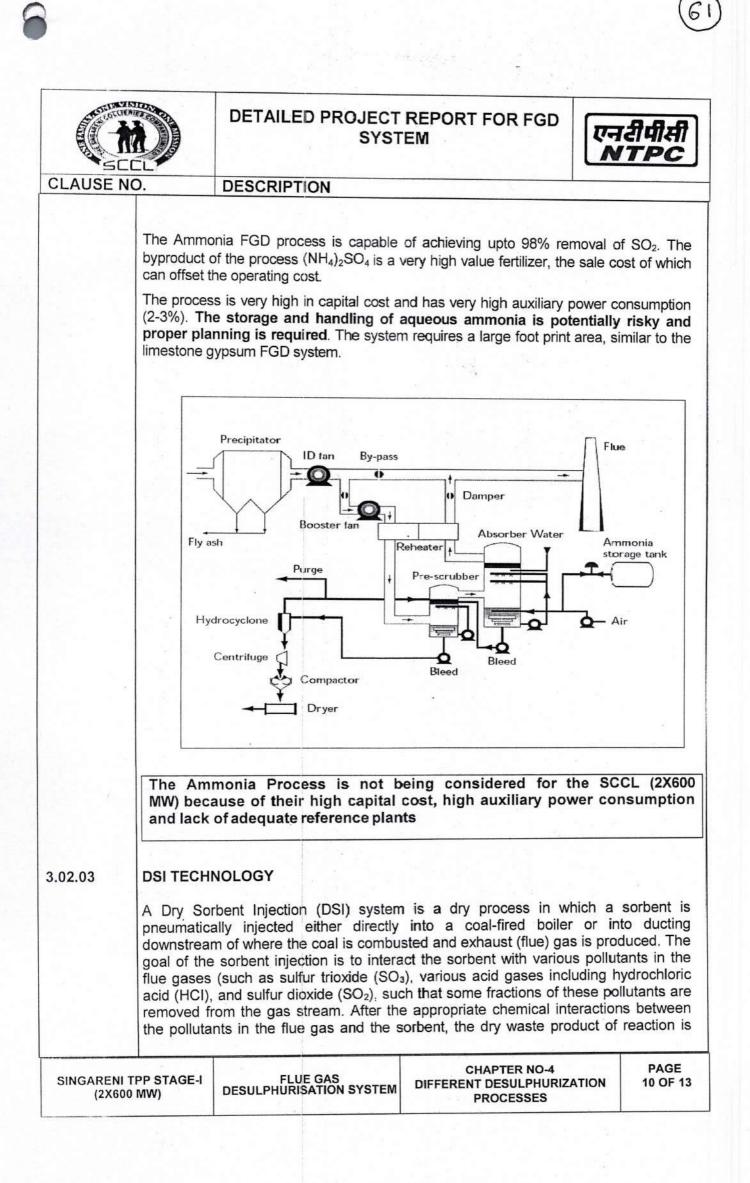

		DETAILED PROJECT REPORT FOR FGD SYSTEM				
CLAUSE I	NO.	DESCRIPTION				
		CHAPTER				
1.00.00	INTRODU		ATION FROCESSES			
	content, all absorbed k coal with lo are in the	tion from fossil fuel fired pow though with respect to coal a by ash. Power plants in India ow/medium Sulphur content. range of 2000-3500 mg/Nr 5% (100% BMCR Condition).	a small percentage, usually a traditionally use a very lo The SO ₂ emissions from S	less than 10% w/medium gra CCL (2X600 M	% is ade //W)	
	emission c	plant is expected to release a control. It may not be possil alone and SO ₂ emission cont	ole to achieve adequate of	control of SO2	by	
2.00.00	SO2 CONT	ROL PHILOSOPHY				
	As discussed above, the estimated SO _x emission from SCCL is approximately 09-15 times the SO _x emissions permitted by the new environment norms. In view of the MOEF norms in India, controlling the SO ₂ emission from the SCCL is necessary.					
	on a susta However, t some perfo	fore, proposed to reduce the SO_2 emission from each unit by at least 90% ained basis, which will result in a net emission of 200 mg/Nm ³ (approx.). to account for change in coal Sulphur content during the plant life and formance deterioration, the Desulphurization system shall be designed to SO_2 reduction of 95%.				
	DIFFERENT DESULPHURIZATION PROCESSES					
The selection of Desulphurization process depends on a number of technical suitability, economic aspects and commercial considera suitability includes the suitability of the process for the fuel und ability to achieve the required SO ₂ reduction efficiency and turn-d the process. The economic aspect includes the capital cost of operation cost including the cost of auxiliary power, cost of sorbent the byproduct and market for the scrubber by-product, if any. The swill be a major criterion for selection as the cost of transportation of likely to be very high. The commercial considerations include the proven technology for the process, availability and successful previously installed Units and guarantees offered by the vendors.				rations. Techni der considerati down capability of the plant, t, disposal cos sorbent utilizat of the limestone the availability operation of	ical ion, y of the tion e is y of the	
	A wide rar This includ	nge of technologies is availa es:	ble to reduce the SO ₂ from	n burning of c	oal.	
		el Desulphurization Bed SO ₂ removal				
	I TPP STAGE-I	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-4 DIFFERENT DESULPHURIZA PROCESSES	PAG ATION 1 OF		

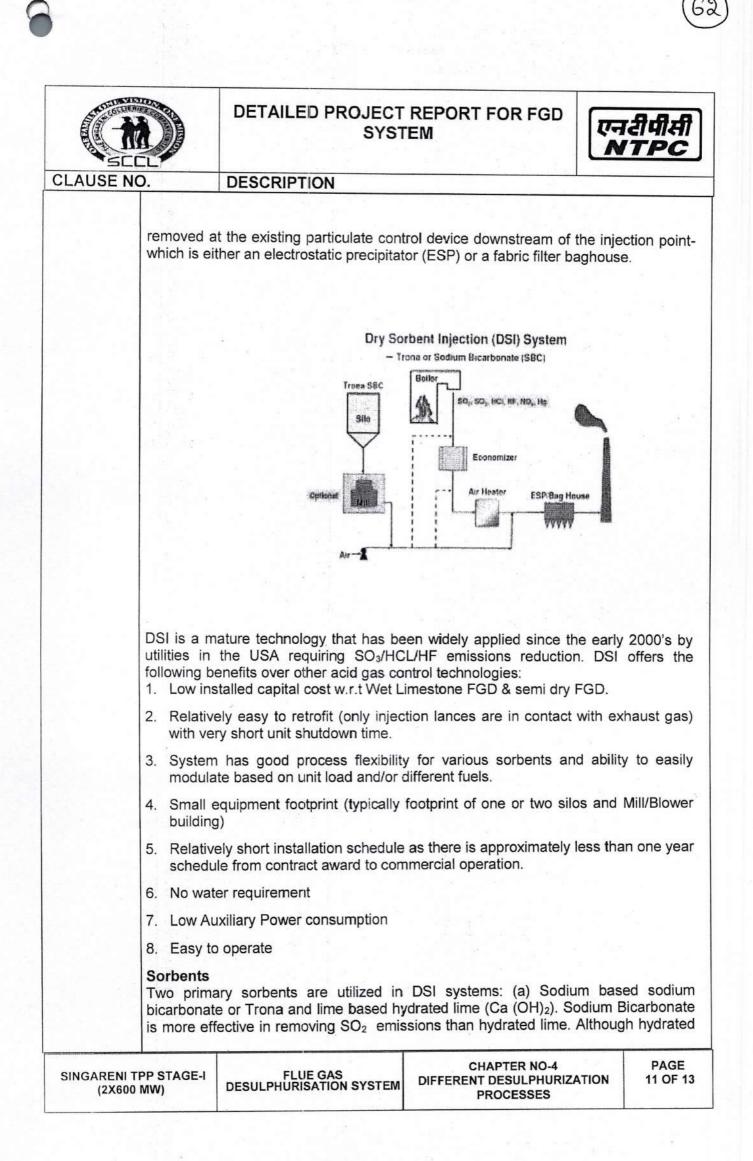
SCEL		DETAILED PROJECT REPORT FOR FGD SYSTEM					
CLAUSE	NO.	DESCRIPTION					
	iii. Flu	e Gas Desulphurization Syste	m				
	In the cas operation,	e of SCCL, Units 1 and 2 (2 option of in Bed removal is	X600 MW), since the uni not applicable.	ts are already ir			
3.00.00	FUEL DES	SULPHURIZATION					
3.01.00	or FeS ₂ . T	rtion of Sulphur (30 – 70%) in he pyrites have high specific mical processes are available	gravities and can be rem	oved by washing			
	high-grade pyrites and method all significant	Coal washing is generally used for removal of ash and is not a common practice for high-grade coals. The efficiency of this process depends largely on the percentage of pyrites and it may not be possible to achieve the desired reduction in Sulphur by this method alone. Besides, the process generates a huge amount of waste with a significant combustible content. The coal desulphurization process is very expensive compared to other desulphurization processes and are rarely used in large-scale plants.					
		s generated from the wash ntal problems like ground and		source of othe			
	As stated above, Coal desulphurization is a very expensive method for reduction of SO ₂ emission and may lead to other environmental problems. It may also not be possible to achieve the desired level of SO ₂ control by this method, for high Sulphur coals.						
	Therefore, this process is not considered suitable for SCCL(2X600 MW).						
3.02.00	FLUE GAS DESULPHURIZATION						
	Nearly all flue gas desulphurization processes depend on the fact that SO ₂ is acidic in nature and use an alkaline substance, most commonly lime or lime stone to neutralize it. Other alkalis like sodium based, magnesium-based alkalis and other type of alkalis such as Ammonia etc. are also used. FGD processes may be broadly classified into three different types:						
	i) Sei						
	ii) Wet FGD process						
	iii) Dry Sorbent Injection System						
	NI TPP STAGE-I 600 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-4 DIFFERENT DESULPHURIZ/ PROCESSES	PAGE ATION 2 OF 1			


The second se		DETAILED PROJECT REPORT FOR FGD SYSTEM			पीसी PC		
CLAUSE NO. DESCRIPTION		DESCRIPTION		-			
3.02.01	DRY/SEM	DRY PROCESS		1			
	system, wh concept of	echnologies include the mo ich sprays a fine dry must of employing circulating fluidise ted through an absorber read	lime into the flue gas, and d bed (CFB) technology, w	the relativ	ely new		
	FGD techn the boiler s	ing technology has much low ology but in the past has ger size was not too large and the ni dry technologies are discus	herally only been selected the fuel Sulphur level was	for project	s where		
	A. Spray	-Dry Process					
low-sulfur the waste However,		er Absorption (SDA) is a dry coal. SDA FGD systems are to products are collected either o achieve sulfur dioxide (SC y scrubber is generally followe	typically located after the a in a bag house or electro D ₂) reduction above 80% v	ir preheate static prec	ers, and cipitator.		
	atomized li atomizers of evaporates depending efficiency. the slurry.	s treated in an absorber by me slurry droplets. The lime or through dual fluid nozzles , cooling the gas at the inle on the relationship betwee The droplets absorb SO ₂ from The desulfurized flue gas, al ash passes out the dry scrub	slurry is atomized through s. Some of the water in the et from 140 °C or higher een approach to saturation n the gas and reacts the So long with reaction products	n rotary cu he spray o to 70ºC t ion and O ₂ with the	ip spray droplets to 80ºC, removal e lime in		
is introduc sorbent fo hydroxide. with ash ir		y process, a very finely atom ed into the flue gas stream us the process is quick lime, a SO ₂ reacts with Ca(OH) ₂ to the ESP or bag filter. The ga vessel or in the duct.	ostream of the ESP or bag which is slaked at site to to form calcium sulfite, wh	filter. The generate ich then c	e norma Calcium collected		
	The SO_2 absorbed in the atomized slurry reacts with lime in the slurry to form calcium sulfite (CaSO ₃) in the following reaction:						
	SO ₂ +CaO+	SO ₂ +CaO+1/2 H ₂ O=>CaSO ₃ .1/2 H ₂ O					
	A part of th	e CaSO₃ reacts with oxygen	in the flue gas to form calci	um sulfate)		
	(CaSO₄): C	CaSO ₃ +1/2 O ₂ + 2H ₂ O => Ca	SO4.2H2O				
	II TPP STAGE-I	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-4 DIFFERENT DESULPHURIZ/ PROCESSES	ATION	PAGE 3 OF 13		


F





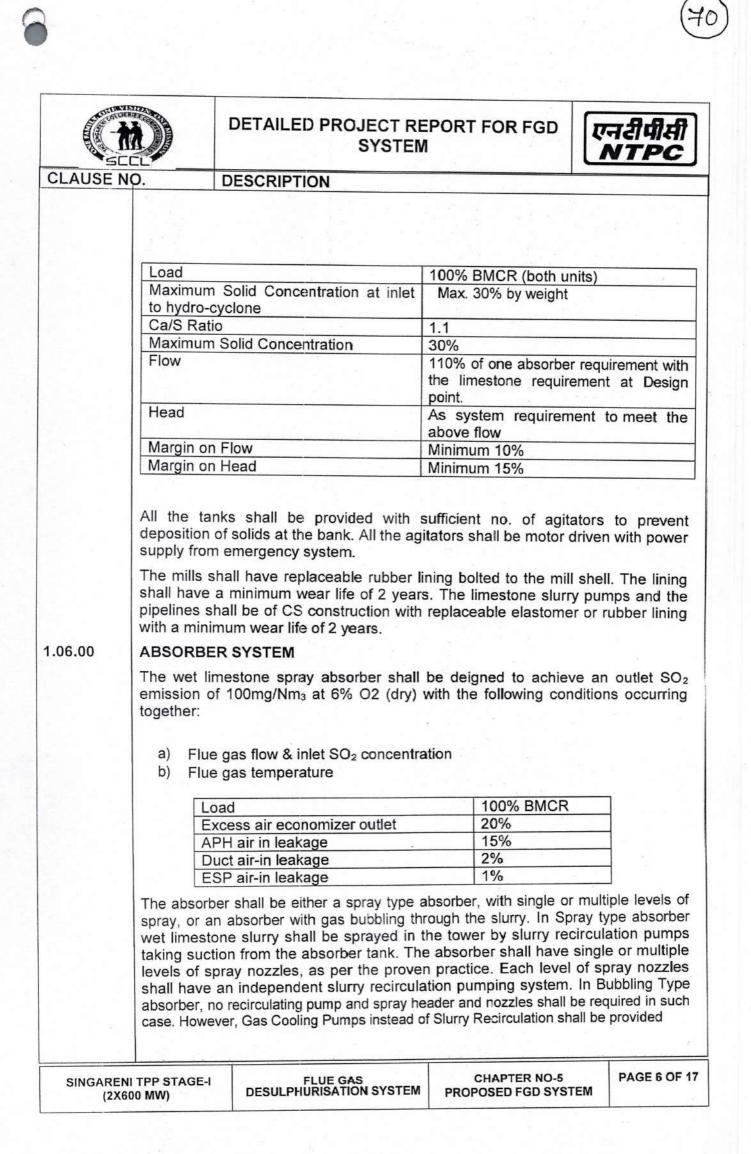


⁽⁵⁹

SCCL		DETAILED F	ROJECT R SYSTE		R FGD	एनटीपीर्स NTPC
LAUSE NO.	D	ESCRIPTION	1			
Ca re Tr au bi re pa C re w m	ases, hydrate eactive acidic o mitigate S cceptable pe ydrated lime icarbonate v equirement fe arents and ac coal being fir emoval efficie vill be very le	y mitigates S0 ed lime is use pollutants con O ₂ with hydrat erformance lev and SO ₂ . Fur- vith SO ₂ is m or SO ₂ captur dded level of d red in the plat ency required t ess. In such a 5%-1% which i	d to remove \$ npared to SO ₂ red lime, wate vels. The wate ther reactivity nuch lower re e compared to ifficulty in desi nt contains and so meet the no scenario the	SO ₃ , HCI and with hydrated or must be add er is needed of hydrated I quiring 6 to to 1 to 1.5 fo igning a cost e round 35-40% orms the sodiu sodium conte	HF primarily Lime. ded to the pu- to facilitate ime as comp 10 times the r Sodium Bi- ffective solut ash. Furthe m bi carbona nt in fly ash	these are ver rocess to rea the reaction bared to sodiu e stoichiomet carbonate. The ion. er, for low Se ate consumption will not exceed
si	orbents. Fu fficiency .Sc	onal cost of rther Process of this process gh operating of Comparison	s is only sui s is being not cost, low SO ₂	ted for low I suited for S	PLF and low CCL (2X600 iency .	v SO ₂ remov
si	orbents. Fu fficiency .Sc	rther Process this process gh operating o	s is only sui s is being not cost, low SO ₂	ted for low I t suited for S removal effic	PLF and low CCL (2X600 iency .	v SO ₂ remov
si ef	orbents. Fu fficiency .So f its very hig	rther Process of this process gh operating of Comparison Spray Dry	s is only suits is being not cost, low SO ₂ of Different CFB /	ted for low F t suited for S removal effic FGD technol Wet Limestone-	PLF and low CCL (2X600 iency . logies Ammonia	v SO₂ remov MW) becau
	orbents. Fu fficiency .So f its very hig ltem	ther Process this process of operating of Comparison Spray Dry Process Lime For low and medium Sulphur content	s is only suits is being not cost, low SO ₂ of Different CFB / CDSDry	ted for low F t suited for S removal effic FGD technol Wet Limestone- Gypsum	PLF and low CCL (2X600 iency . logies Ammonia process	v SO ₂ remov MW) becaus DSI Sodium
	orbents. Fu fficiency .So f its very hig ltem Sorbent Coal Sulphur	rther Process of this process of operating of Comparison Spray Dry Process Lime For low and medium Sulphur	s is only suits is being not cost, low SO ₂ of Different CFB / CDSDry Lime	ted for low F t suited for So removal effic FGD technol Wet Limestone- Gypsum Limestone	PLF and low CCL (2X600 iency . logies Ammonia process Ammonia No Sulphur content	v SO ₂ remov MW) becaus DSI Sodium bicarbonate For low and medium Sulphur content
	orbents. Fu fficiency .So f its very hig ltem Sorbent Coal Sulphur Limit Removal	rther Process of this process of operating of Comparison Spray Dry Process Lime For low and medium Sulphur content coal	s is only suits is being not cost, low SO2 of Different CFB / CDSDry Lime No limit	ted for low F t suited for Si removal effic FGD technol Wet Limestone- Gypsum Limestone No Sulphur content limit	PLF and low CCL (2X600 iency . logies Ammonia Ammonia No Sulphur content limit Above	v SO ₂ remov MW) becaus DSI Sodium bicarbonate For low and medium Sulphur content coal

		DETAILED PROJECT REPORT FOR FGD SYSTEM		OR FGD	एनरीपीसी NTPC	
LAUSE NO.		DESCRIPTION				
	Sorbent Utilization	Poor	Poor	Good	Good	Poor
	By- product	Waste Mixture of Calcium compounds (Sulfite and sulfates)	Waste Mixture of Calcium compounds (Sulfite and sulfates)	Gypsum	High value fertilizer Ammonia sulfate solution	Along with Fly Ash
	Aux. Power	Low	Low	High	Very High	Low
	Capital Cost	Low	Low	High	High	Low
	Operating Cost	nign	High	Low	Low	Very High
	Reference Plants above 50 MW		Few	Many	Few	Few
						<u>, 1</u>
SINGARENIT	PP STAGE-I	FLUE G	AS		PTER NO-4 DESULPHURIZA	PAGE TION 13 OF 1

64)

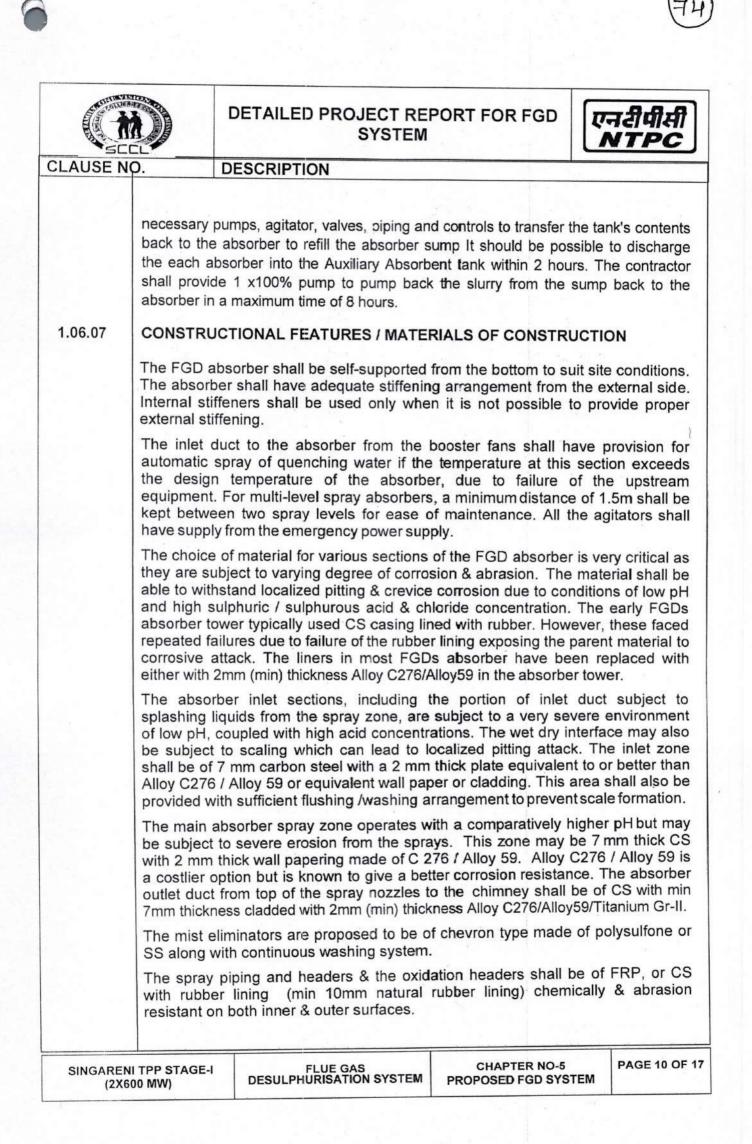

		DETAILED PROJECT REPORT FOR FGD SYSTEM		
CLAUSE N	IQ.	DESCRIPTION		
CLAUSE N	PROPO The wet F offered by substantial As discus Limestone following re i. Abil ii. Hig iii. Hig iii. Hig iv. Rea ava v. Sala vi. Larg vii. Mat num The FGD s reliable & p having ado It is propos WET LIM Various s	DESCRIPTION <u>CHAPTE</u> SED WET LIMESTONE FLUE G GD process is considered a co a number of suppliers. The reliability y in recent times. Sed in the previous section Gypsum Process is selected	AS DESULPHURISA ommercially mature to lity on the wet FGD has and seen in Table for SCCL (2X600 MV on efficiency w reagent consumption by the process is play hinimum commercial anced competition. SO ₂ removal efficie vailability. Further, the dust burden substa sum by locating suita	TION SYSTEM technology and is as been increased a, the Wet Lime M) Stage-I for the on rate. entiful and readily in risks and large ency of ~95% with he FGD system is intially. able buyers.
 b. Limestone Transportation c. Limestone Handling System d. Milling System e. The FGDAbsorber f. Gypsum De-watering system g. Gypsum Handling System h. Process Water Distribution System i. ECW system j. Waste Water Treatment System Description of the selection and sizing of desired requirements of efficient operation of the selection operation operation			f various above sys & life of the plant sha	tems to meet th all follows:
	NI TPP STAGE-I 600 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-5 PROPOSED FGD SYS	PAGE 1 OF

		DETAILED PROJECT REP SYSTEM	DETAILED PROJECT REPORT FOR FGD SYSTEM					
CLAUSE	NQ.	DESCRIPTION						
1.01.00	DESIGN	DESIGN CONSIDERATION						
	wet Limes achieve th proven m System sl in operati Sufficient availabilit designed planned a shall also	he FGD system shall be installed downstream of the ID fans and shall be bas ret Limestone Forced Oxidation Process. The FGD system shall be design chieve the required SO ₂ capture without the use of any other additives. Only roven materials for similar application shall be used for the system. The ystem shall be designed so as to be in operation whenever the Steam General operation Each unit shall be provided with an independent wet absor- ufficient redundancies shall be provided in all the auxiliaries to achieve vailability of the system, to match the unit availability. The absorber shall esigned so that all maintenance in the absorber shall be carried out durin lanned annual overhaul, without requiring any bypass. A bypass for the FGI hall also be provided. The bypass will be used only in case of emerge or maintenance of the absorber.						
1.02.00	BOOSTE	R FANS:						
	FGD syste	em & ducting and wet stack of 200	m height also consid					
	FGD syste from wet boosted u sufficient installation	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mm n of future (Selective Catalytic Redu	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (action) SCR (if requi	dering the exit loss lischarge shall be s shall include the approximately) for ired).				
	FGD syste from wet boosted u sufficient installation Each fa	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (action) SCR (if requi	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point				
	FGD syste from wet boosted u sufficient installation Each fa	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition Type of fans	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (action) SCR (if requi ns occurring togethe Constant spee	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point				
	FGD syste from wet boosted u sufficient installation Each fa	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition Type of fans No. of fans in operation	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (action) SCR (if requi ns occurring togethe Constant spee 2	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point				
	FGD syste from wet boosted u sufficient installation Each fa I. II.	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition Type of fans	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (uction) SCR (if requi ns occurring togethe Constant spee 2 20% 44% over the	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point d, axial type				
	FGD syste from wet boosted u sufficient installation Each fa I. II. III.	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition Type of fans No. of fans in operation Margin over flow	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (uction) SCR (if requi ns occurring togethe Constant spee 2 20% 44% over the	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point d, axial type e calculated head				
	FGD syste from wet boosted u sufficient installation Each fa I. II. III. IV. V.	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition Type of fans No. of fans in operation Margin over flow Margin over pressure requirement	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (action) SCR (if requi ns occurring togethe 2 20% 44% over the value excludin 50 Hz 0 mmWc	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point d, axial type e calculated head				
	FGD syste from wet boosted u sufficient installation Each fa I. II. II. IV. V. V. VI. VII.	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition Type of fans No. of fans in operation Margin over flow Margin over pressure requirement Power supply frequency Pressure at Booster Fan suction Gas temperature (degree Celsius)	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (uction) SCR (if requi ns occurring togethe 20% 44% over the value excludin 50 Hz 0 mmWc 150	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point d, axial type e calculated head g the static head				
	FGD syste from wet boosted u sufficient installation Each fa I. II. II. IV. V. V. VI. VII.	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition Type of fans No. of fans in operation Margin over flow Margin over pressure requirement Power supply frequency Pressure at Booster Fan suction	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (action) SCR (if requi ns occurring togethe 2 20% 44% over the value excludin 50 Hz 0 mmWc	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point d, axial type e calculated head g the static head				
	FGD syste from wet a boosted u sufficient installation II. III. IV. V. VI. VI. VII. VIII.	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition Type of fans No. of fans in operation Margin over flow Margin over pressure requirement Power supply frequency Pressure at Booster Fan suction Gas temperature (degree Celsius) Flue gas control	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (uction) SCR (if requi ns occurring togethe 20% 44% over the value excludin 50 Hz 0 mmWc 150	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point d, axial type e calculated head g the static head				
1.03.00	FGD syste from wet a boosted u sufficient installation Each fa I. II. III. IV. V. VI. VI. VII. VII. V	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition Type of fans No. of fans in operation Margin over flow Margin over pressure requirement Power supply frequency Pressure at Booster Fan suction Gas temperature (degree Celsius) Flue gas control	m height also consid e gas from ID fan d Sizing of booster fan wc pressure drop (action) SCR (if requi ns occurring togethe Constant spee 2 20% 44% over the value excludin 50 Hz 0 mmWc 150 Blade pitch co	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point d, axial type e calculated head g the static head				
1.03.00	FGD syste from wet a boosted u sufficient installation II. III. IV. VI. VI. VII. VII. VII. VI	em & ducting and wet stack of 200 i stack over the entire load range. The up using two no of booster fans. S margin to accommodate 100 mmv n of future (Selective Catalytic Redu an to be sized with following condition Type of fans No. of fans in operation Margin over flow Margin over pressure requirement Power supply frequency Pressure at Booster Fan suction Gas temperature (degree Celsius) Flue gas control	m height also conside gas from ID fan d Sizing of booster fan wc pressure drop (action) SCR (if requi- ns occurring togethe Constant spee 2 20% 44% over the value excludin 50 Hz 0 mmWc 150 150 Blade pitch co blade pitch co	dering the exit loss lischarge shall be s shall include the approximately) for ired). r at design point d, axial type e calculated head g the static head g the static head ntrol ntrol				

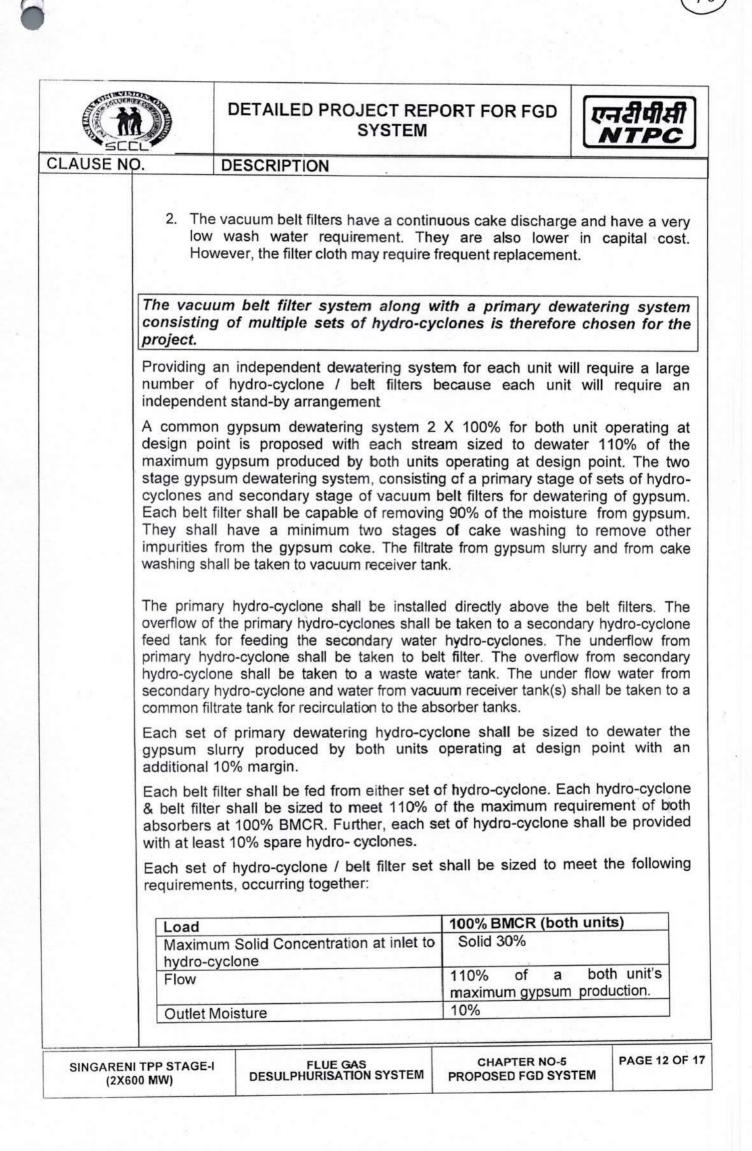
		DETAILED P	ROJECT REF SYSTEM	PORT FOR	FGD	एनरीपीसी NTPC	
CLAUSE	NQ.	DESCRIPTION					
	The calcuin coal &	ulation is based on target emission of	1.15 % of Sulp 100 mg/Nm3	hur (data furr	nished by	v SCCL) content	
	PLF		100%	6 90%	80%	70%	
		TONE (T/Day)	650	585	520	455	
	GYPSU	IM (T/Day)	1085	980	870	760	
	Lime stor TPH capa	I FGD Plant . ne shall be unloade acity to the crusher e shall be unloade	house for sizing	g it to -20 mm	ı.		
	Lime stor TPH capa Limeston	ne shall be unloade	house for sizing	g it to -20 mm erground Hop	n. oper from	the Limestone	
	transfer f Gates.	ders which feed li the limestone to f nestone Crusher is	he Limestone	Crushers the	rough Ra	ack and Pinion	
	discharge three num	it onto the Belt F nbers of Limestone storage capacity).	eeders and Bu	cket Elevator	s, and to	be sent to the	
	Silos to t	hed limestone will h he dedicated 24-h Belt Feeders an building.	r storage Limes	tone Bins/mil	ll bunker	through Rotary	
	carbon st	age silos and hoppo teel with a SS lining cones to ensure re	g of grade SS3	04 of minimu	of minimu m 4 mm	um 10 mm thick thickness in the	
	shall be o wet ball r	The design of storage silos shall confirm to IS 9178 (Part 1 to 3). The storage bin shall be capable of feeding the limestone by means of gravimetric feeder to the wet ball mills. The top of the unloading hopper shall be equipped with a grate to protect the downstream equipment from gravel lumps or tramp waste.					
	Dust sup and servi	pression & dust e ice water system s	extraction syste hall be provided	m, ventilatior d throughout	n system the Lime	, potable water stone handling	
	plant.						
	plant.						

		DETAILED PROJECT RE SYSTEM	PORT FOR FGD	एनरीपीसी NTPC		
CLAUSE	NO.	DESCRIPTION				
.05.00	BASISEO		OTEM.			
	BASIS FOR SELECTION OF MILLING SYSTEM: Lime stone requirement					
	To cater to deterioratio designed w station. The	o any change in coal Sulphi n in mill performance, it is prop rith a minimum margin of 10% a e milling system for the FGD o nt milling system for each unit.	bosed that the milling	system shall be equirement of the		
	milling syst	unitized system requires addition tem has been envisaged with atives were explored for the com	one working and on	it area, Common e stand-by mills.		
	Two comm milling syste	on type of milling system emploem and the wet milling system.	oyed for wet FGD pro	ocess are the dry		
1		n dry milling systems, the lim compressed air is used for cor- storage silo from where a gra quantity to the lime slurry prepar- mestone has to be dried prior to noisture at mill inlet has to be additional hot air supply system crushed limestone has higher monger life for the wear parts but ransportation. The capacity of wet mill of the same volume.	vimetric belt feeder ration system. For pro- o feeding to the mill a limited to 1-2%. This n for drying of limes noisture. The dry mills t consume more pow- the mill is also reduced	d limestone to a feeds measured oper grinding, the and the limestone s may require an tone in case the s typically have a ver for grinding & ced compared to		
		 In wet milling system, slurry of crushed The pulverized limestone slurry is class hydro cyclone and stored in a storage to to the absorber. The wet milling sy consumption but also a lower wear life slurries. However, wet milling system is lower operating cost and overall required slurry feed to the absorber. 		gle or multi-stage here it is pumped a lower power erosion by liquid erred due to their unit, which needs		
	In view of the above, it is proposed to have a wet milling system for FGD					
	installations fineness re 325 mesh f have the c fineness. A The power However,	wet ball & tube mills are to s, through vertical medium spe- equired for the FGD limestone for which the horizontal ball mill apability of grinding an average new development in FGD app consumption of these mills is they require a typical feed size equirements.	ed mills are also us power is typically ab s are more suited. He e feed size of ³ ⁄4" & lications is the use o lower than that of ho	ed. However, the ove 90% through prizontal ball mills 1" to the required f vertical ball mill. rizontal ball mills.		
	ENI TPP STAGE-I (600 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-5 PROPOSED FGD SYS	PAGE 4 OF 1		

		DETAILED	DETAILED PROJECT REPORT FOR FGD एनरीपीर्स SYSTEM				
LAUSE N	Q.	DESCRIPTION					
	applicati There sh mills, 1 v	ons, are also pro nall be common n working & 1 stand	being the most wid posed for SCCL (2X nilling system as two dby, common for the ditions, occurring tog	(600 MW). o number horizonta e two units. Each r	al/vertical wet ba		
	i Lo	ad	100% BMCR				
		a/S Ratio (for ill Sizing)	1.1				
		put Feed Size	1"	······			
	iv Oi	utput fineness	Not less than 90% requirements of th stringent.	6 through 325 me e FGD absorber, w	sh or as per the vhichever is more		
	V Ca	apacity	110% of limestone Design point with out condition.	requirement of all the mill wear par	the absorbers a ts in nearly wor		
	maximur instrume	m demand and ints to accurately	belt feeder shall b shall have a va control the feed rat all be of Stainless St	riable speed driv e. The belt shall be	e and weighing		
	fed to the slurry she tank. The cyclones	e mill through tr all be discharged e mill discharge from where the	feeder shall be mixed with process water in a hopper a trunnion on one side of the mill. The ground limeston ed through the mill trunnion at the other end into a settling le slurry shall be pumped to single or multi-stage hydrone fine product slurry shall be taken to slurry storage ta shall be mixed with the mill inlet feed.				
	Each mi cyclone.	ll shall be provide 2x100% slurry p	ided with an independent mill separator tank and hydro- pumps shall be provided for each separator tank.				
	common 12 hours calculation more that	i lime slurry stora s' requirement of on, solid concent an 20% or actual	flow of the require age tanks, each size f 2 units operating tration (by weight) i required whichever	ed for minimum sto at 100% BMCR. In the slurry shall is lower.	orage capacity o For tank volume be assumed, no		
	FGD uni also be with a m	ts by 2x100% slu provided. The slu aximum of 30% s	pumped from the s my pumps for each urry pump shall be solid weight in the s nydro-coupling for c	unit. A 100% stand sized to meet the lurry. The pumps s	I-by pipeline sha required capacity shall be equipped		



		DETAILED PROJE	CT REI STEM	PORT FOR FGD	एनरीपीसी NTPC	
CLAUSE	NQ.	DESCRIPTION	<i>D</i>			
1.06.01	ABSORB	ER TOWER				
	The efficit following a	ency of the wet limeste absorber related factors:	one SO;	2 scrubbing system	depends on the	
	ii. Liq iii. Re	ie gas velocity juid to gas volume flow (L circulation slurry pH /S molar ratio	JG) ratio			
	3.0 m/s to However,	rlier times, the flue gas give sufficient residence during recent times nts, the latest FGDs have	e lime for with in	the gas to react with provements in de	h atomized slurry. sign of various	
	Increasing the flue gas velocity increases the SO_2 removal efficiency of the liquid and the absorbers can operate with a lower slurry flow rate to achieve the same efficiency, which significantly reduces the pumping power.					
	However, it also leads to an increased gas side pressure drop and a higher mist carryover, which may lead to a plugging of the mist eliminator. The velocity of the flue gas through absorber shall, therefore, be limited to 4 m/s.					
	Wet limestone FGD process operates with a very high L/G ratio. However, increasing the gas velocity through the absorber has brought down the L/G ratio due to higher mass transfer. The minimum L/G ratio of the absorber shall be 20 liters per 1000 m ³ of gas for effective removal of SO ₂ .					
	SO_2 removal efficiency of a wet limestone process increases with increasing pH. However, above 6.2 pH, the oxidation of calcium sulfite to gypsum becomes difficult and this can lead to scale formation. The pH of the absorber slurry shall therefore, be regulated between 5.5 to 6.2 for effective removal of SO_2 and oxidation of calcium sulfite to gypsum.					
	The SO ₂ removal efficiency increases with increasing Ca/S molar ratio. However, wet limestone process is capable of achieving very high SO ₂ removal efficiency with very low Ca/S ratio. Further, in order that the gypsum produced is saleable, the molar ratio should not exceed 1.03, which means about 97% utilization of limestone.					
	The absorber tower shall be therefore sized with the following parameters at 100% BMCR:					
		Flue gas velocity:		s (max)		
	L/G ratio : 20 L/1000m3(min)					
	pH : 5.5 to 6.2 Ca/S ratio: 1.03 max					
1.06.02	The abso	RECIRCULATION PUM rber shall have single of I have an independent	r multiple	e levels of spray no: system. The capac	zzles. Each spray city of the pumps	
	ENI TPP STAGE- X600 MW)	I FLUE GAS DESULPHURISATION S	SYSTEM	CHAPTER NO-5 PROPOSED FGD SYS	PAGE 7 OF 1	


CLAUSE NO. DESCRIPTION shall be sufficient to maintain an L/G ratio of 20L per 1000m ³ of gas at BMCR. The maximum solid concentration in the recirculation slurry shall not exceed 30%. In case the absorber has a single level of nozzles, there shall be a minimum of 3 pumps of 50% capacity each. For multiple spray levels, 2x100% pump shall be provided for each level. Alternatively, a spare absorber spray level with independent pump can be provided. It shall be possible to reduce the slurry flow wrate at lower loads to save power. For this purpose, the pump shall be provided with a VED motor or a variable score) hydro-coupling drive. The absorber recirculation pumps shall be sized to achieve a minimum L/G ratio of 20 liters per 1000 m3 of gas or actual predicted, whichever is higher, at BMCR without the spare pumps / spray levels working. Further each pump shall be designed with the following margins to cater to deterioration in performance due to wear of impeller liners: Flow:minimum 20% He auminimum 20% He aud: minimum 20% The number, capacity and spread of the spray nozzles shall be in line with the proven practice and shall be adequate to cover the whole absorber cross-section uniformly without too much impingement in the absorber walls. A minimum of 5% redundancy shall be provided in the spray nozzles at each level to ensure adequate coverage with a few choked nozzles. 1.06.03 ABSORBER TANK The absorber shall have an integrated oxidation tank at its bottom. The tank shall be sized to provide a minimum mean residence time of 12 hrs for the slurry to be oxidized to gypsum. For oxidation of calcium sulphile to gypsum, the absorber shall have a grid type oxidation system to a		DETAILED PROJECT REI SYSTEM		एनरीपीसी NTPC
 The maximum solid concentration in the recirculation slurry shall not exceed 30%. In case the absorber has a single level of nozzles, there shall be a minimum of 3 pumps of 50% capacity each. For multiple spray levels, 2x100% pump shall be provided for each level. Alternatively, a spare absorber spray level with independent pump can be provided. It shall be possible to reduce the slury flow rate at lower loads to save power. For this purpose, the pump shall be provided with a VFD motor or a variable scoop hydro-coupling drive. The absorber recirculation pumps shall be sized to achieve a minimum L/G ratio of 20 liters per 1000 m3 of gas or actual predicted, whichever is higher, at BMCR without the spare pumps / spray levels working. Further each pump shall be designed with the following margins to cater to deterioration in performance due to wear of impeller liners: Flow:minimum 20% Head: minimum 20% Head: minimum 20% Head: moment and shall be adequate to cover the whole absorber cross-section uniformly without too much impigment in the absorber walls. A minimum of 5% redundancy shall be provided in the spray nozzles at each level to ensure adequate coverage with a few choked nozzles. 106.03 ABSORBER TANK The absorber shall have an integrated oxidation tank at its bottom. The tank shall be sized to gypsum. For oxidation of calcium sulphite to gypsum, the absorber shall have a grid type oxidation system or a parage jet oxidation system or lance type or air rotary sparge system or jet air sparge system, as per the proven practice. The tank should be equipped with a sufficient no. of agitators to work in conjunction with the oxygen sparging system to keep the slurry in continuous motion. 	CLAUSE NO. D	DESCRIPTION		
	 shall be suffit The maximum 30%. In case the all pumps of 500 provided for independent rate at lower with a VFD me of 20 liters per without the st designed with to wear of import i. Flow:r ii. Head: The number, proven praction uniformly with redundancy is adequate cover 1.06.03 ABSORBER The absorber be sized to provide to gy For oxidation system or jet is equipped with sparging system. The oxygen blowers for east 4.0 time the actual re occurring sime sized to provide to gy for extendence to the actual re occurring sime sized. 	cient to maintain an L/G ration m solid concentration in the boorber has a single level of r % capacity each. For multiple each level. Alternatively, pump can be provided. It sha loads to save power. For this otor or a variable scoop hydro- recirculation pumps shall be r 1000 m3 of gas or actual pr pare pumps / spray levels w in the following margins to cat beller liners: minimum 20% capacity and spread of the s ce and shall be adequate to c nout too much impingement in shall be provided in the spr rerage with a few choked nozz TANK shall have an integrated oxid rovide a minimum mean resid upsum. of calcium sulphite to gypsur em or a sparge jet oxidation shall each absorber. The compress es the stoichiometric air requ as the stoichiometric air requ quirement, whichever is high nultaneously. The natural oxid	recirculation slurry s hozzles, there shall be a spray levels, 2x100° a spare absorber s ll be possible to reduce s purpose, the pump coupling drive. sized to achieve a m redicted, whichever is working. Further each er to deterioration in p spray nozzles shall be over the whole absorber the absorber walls. A ray nozzles at each zles. lation tank at its bottor ence time of 12 hrs for m, the absorber shall ystem or lance type or e proven practice. Th to work in conjunction huous motion. be supplied by 2x10 sor/blower shall be si irement for Bubbling her, under the followin dation of sulfite by re	shall not exceed a minimum of 3 % pump shall be spray level with ce the slurry flow shall be provided inimum L/G ratio higher, at BMCR h pump shall be performance due the provided be provided inimum of small be performance due m. The tank shall or the slurry to be have a grid type air rotary sparge e tank should be with the oxygen 0% oxidation air ized to supply at ver process & at Type process or ng condition, all-

		DETA	DETAILED PROJECT REPORT FOR FGD SYSTEM		
CLAUSE	NO.	DESCR	IPTION		
				· · · · · ·	
	Load		100% BMCR		
	Flow		Minimum 2.5 times for spray tower proce Bubbling Type process, the stoichiometri	ss & 4.0 for c requirement.	
	Head		For spray tower process actual requirement considering choking/ blockage of minimum 10% of the oxidation nozzles / sprayers or minimum 8500 mmwc whichever is higher. For Bubbling Type process actual requirement considering choking/ blockage of minimum 10% of the oxidation nozzles / sprayers or minimum 3500 mmwc		
Margi		on Head	whichever is higher. 10% under above conditions.		
	Ambient Conditio		45°C / 60% RH.		
1.05.04	oxidation s oxidation a tips due to	system sha iir in order localized e	spargers shall have a minimum redundar Il be complete with a quenching system to to prevent any scaling or buildup that could oc evaporation of recycled slurry.	cool down heated	
1.06.04	oxidation s oxidation a tips due to MIST ELII The clean chevron ty of both end eliminators	system sha lir in order localized e MINATOR n Flue gas pe Mist Eli ds of the fir	Il be complete with a quenching system to a to prevent any scaling or buildup that could oc evaporation of recycled slurry. S from the absorber tank shall be demisted minators (ME). Provision shall be made for co st & second stage and the front section of the ater arrangement shall also be provided at th	cool down heated cour at the sparger l in a three stage ontinuous washing third stage of mist	
1.06.04	oxidation s oxidation a tips due to MIST ELII The clean chevron ty of both end eliminators third stage	system sha lir in order localized e MINATOR n Flue gas pe Mist Eli ds of the fir s. Wash wa of mist elin	Il be complete with a quenching system to a to prevent any scaling or buildup that could oc evaporation of recycled slurry. S from the absorber tank shall be demisted minators (ME). Provision shall be made for co st & second stage and the front section of the ater arrangement shall also be provided at th	cool down heated cour at the sparger l in a three stage ontinuous washing third stage of mist	
	oxidation s oxidation a tips due to MIST ELII The clean chevron ty of both end eliminators third stage EMERGEI An emerge time (mini exceeds t provided t high flue (emergend	system sha ir in order localized e MINATOR a Flue gas pe Mist Eli ds of the fir s. Wash wa of mist elin NCY SPRA ency coolin mum 15 n he design o protect ti gas tempe cy water ta ances/nozz	Il be complete with a quenching system to a to prevent any scaling or buildup that could oc evaporation of recycled slurry. S from the absorber tank shall be demisted minators (ME). Provision shall be made for co st & second stage and the front section of the ater arrangement shall also be provided at the minator.	cool down heated cour at the sparger l in a three stage ontinuous washing third stage of mist e back end of the address temperature ipment's shall be equipment against an elevated tank k volume and the	
1.06.05	oxidation a tips due to MIST ELII The clean chevron ty of both end eliminators third stage EMERGEI An emerge time (mini exceeds t provided t high flue (emergend injection la the absort AUXILIAR	system sha ir in order localized e MINATOR a Flue gas pe Mist Eli ds of the fir s. Wash wa e of mist elin NCY SPRA ency coolin mum 15 n he design o protect ti gas tempe cy water ta ances/nozz ber	Il be complete with a quenching system to a to prevent any scaling or buildup that could oc evaporation of recycled slurry. S from the absorber tank shall be demisted minators (ME). Provision shall be made for co st & second stage and the front section of the ater arrangement shall also be provided at the minator. Y SYSTEM g system for automatic spray of quenching wa hin) at the inlet to the absorber, in case the temperature due to failure of upstream equi- he FGD and all other sensitive downstream of tratures. The water shall be supplied from ank) installed near to the absorber. The tan des shall be designed to protect the inlet duc	cool down heated cour at the sparger l in a three stage ontinuous washing third stage of mist e back end of the back end of the agas temperature upment's shall be equipment against an elevated tank k volume and the st and the lining of	
	oxidation s oxidation a tips due to MIST ELII The clean chevron ty of both end eliminators third stage EMERGEI An emerge time (mini exceeds t provided t high flue (emergend injection la the absorb AUXILIAF One Num	system sha ir in order localized e MINATOR a Flue gas pe Mist Eli ds of the fir s. Wash wa of mist elin NCY SPRA ency coolin mum 15 n he design o protect ti gas tempe cy water ta ances/nozz per RY ABSOR ber auxiliar	Il be complete with a quenching system to a to prevent any scaling or buildup that could of evaporation of recycled slurry. S from the absorber tank shall be demisted minators (ME). Provision shall be made for co st & second stage and the front section of the ater arrangement shall also be provided at the minator. CY SYSTEM g system for automatic spray of quenching wa hin) at the inlet to the absorber, in case the temperature due to failure of upstream equ he FGD and all other sensitive downstream of tratures. The water shall be supplied from ank) installed near to the absorber. The tan des shall be designed to protect the inlet duc	tin a three stage ontinuous washing third stage of mist e back end of the ater for a sufficient e gas temperature upment's shall be equipment against an elevated tank k volume and the st and the lining of	

(73

A STATE		DETAILED PR	DETAILED PROJECT REPORT FOR FGD SYSTEM		
CLAUSE	NQ.	DESCRIPTION			
	minimum 4	1 mm thick rubber lini	hall be made of minimum 7 mm thic ing of best quality bromine butyl rub 2 mm thick cladding of C276/All	ber .	
		Component	New York		
		Component	Material		
	Absorbe	er Inlet Flue Duct	CS with min 7mm thickness		
Absor Interfa		Dij	CS with C276 / Alloy 59 cladding		
	Absorbe tanks	er & Oxidation	CS with min 7mm thickness cladded with 2mm (min) thickness Alloy C276/Alloy59		
	Absorbe to Chim	er Outlet Duct up ney	CS with min 7mm thickness of (min) thickness Alloy C276/Alloy5		
	Mist Elir	ninator	Polysulfone or stainless steel		
	Spray Pi	ping / Header	FRP or CS with rubber lining		
1.07.00 GYPSUM DEWATERING SYSTEM Gypsum slurry from each absorber tank shall be pumped by 2 speed pump (for each unit) to the common dewatering system. have 15-30% solid concentration (by weight) as per the standard manufacturer. A 100% stand-by pipeline shall also be provided. be sized with a minimum margin of 10% on flow and pressure of maximum flow requirement from the absorber at 100% BMCR		The slurry shall rd practice of the Each pump shall			
In order that the gypsum produced in the absordewatered to ensure less than 10% moisture in the world use a two stage dewatering system, of sets of hydro-cyclones increases the solid of thick slurry is further dewatered to less the dewatering system.			10% moisture in the gypsum. Mos vatering system, where the primary eases the solid content in the slurr	t FGD systems in stage consisting y to 45-60%. This	
			system is either a vertical basket centrifuge or a		
	cal wa	ke heeling. They are	fuges have a batch discharge w also high in capital cost, require a g and have higher maintenance ds.	a larger amount of	

		DETAILED PROJECT RE SYSTEM		एनटीपीसी NTPC		
CLAUSE	NO. C	ESCRIPTION				
	Gypsum P	urity	90% minimum			
	replaceable of hydro cyclon polyester or shall be cont be of rubber of The dried gy	dewatering pumps and the pip elastomer or rubber lining with tes shall have replaceable r polypropylene and shall have inuously tracked to avoid slip construction.	n a minimum wear life ubber lining. The filte a life of minimum 6 n page. The drive belt	e of 2 years. The er cloth shall be nonths. The cloth (if provided) shall		
1.07.01	GYPSUM HA	NDLING & DISPOSAL SYS	ГЕМ			
	It is estimated that the FGD shall produce 1000-1100 tons of gypsum per day SCCL (2X600 MW). This by product can be used by cement manufactu located in the proximity of the power plant. The covered storage shed gypsum shall be sufficient to store gypsum equivalent to consumption minimum 7 days at Design point (Generation of both units to be consider Also the space for additional covered shed for gypsum storage has b identified. Gypsum storage area may be further enhanced as per requirem subject to space availability.					
1.07.02	ECONOMIC UTILIZATION OF BYPRODUCT/GYPSUM					
	specific prop composition Moisture con FGD gypsun surpass the	cts quality depends mainly operties of an individual FG of the fuel and limestone u tent and crystal size and sha n can be produced at purity quality of many sources of able to cement industries.	BD gypsum are dep sed, as well as the upe are also importan y levels well over 9	process design. t to the gypsum. 0%, to equal or		
	construction. disposed-off	be disposed-off to nearby The suitable area in existing to existing ash dyke in case may float Expression of Inte	g ash slurry pond ma , there is no buyer a	ay be marked to available . SCCL		
1.08.00	PROCESS W	PROCESS WATER DISTRIBUTION SYSTEM				
	Two (2) Proc water pumps, both units) to system) to pr to store 30 r (including abs and slurry pr	ess water Storage tanks along if required, (Each pump cateri o feed the blowdown water (for ocess water tank. Each proce ninutes of total maximum wat sorber system and mist eliminate paration system and gypsum Design point. 2x100% Process	with two numbers of ng to the process wate tapping from CW sys ss water storage tank er required for the en ator washing system, I n dewatering system,	er requirements of tem/service water shall be designed tire FGD process imestone grinding etc.) for the units		
	NI TPP STAGE-I	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-5 PROPOSED FGD SYST	PAGE 13 OF		

(77

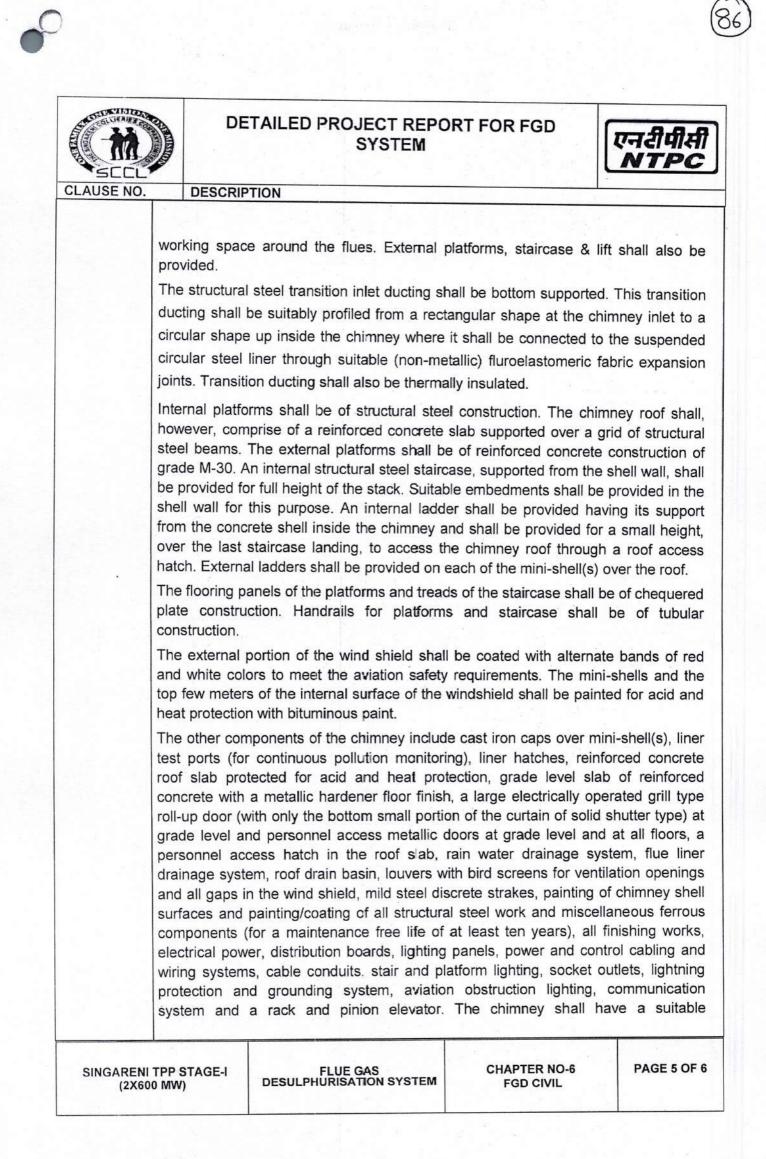
1.09.00 C 1.09.01 A II C S S S S S S S S S S S S S S S S S	Wash Water water Storag COOLING M A centralized in the prima cooling wate system auxil branched o Desulphuriza be connecte DMCW pump circulating w water. This booster pum secondary w For the prim Cu.M shall b closed circuit from the DI emergency n would be give	DESCRIPTION Pump shall be provided for both te tanks. ATER SYSTEM (ECW SYSTEM A/combined ECW system is envi- ry circuit, Demineralised cooling er through plate type heat exch- iaries. The outlet header from p ff to supply cooling water ation system Auxiliaries coolers. d back into a common return h os to complete the closed loop pr ater system shall receive water water will be further pressurise ps and fed through the plate ty ater from PHEs shall be used as ary cooling circuit, an overhead be provided by the bidder. Outle t return header. Make up to the of W water transfer pumps locate nake up from the discharge of co en to overhead storage tank.	M) isaged for both FGD s water (DMCW) pump nangers (PHE) for coo plate heat exchangers to the to the indiv Outlet from these auxi header and led back rimary cooling circuit. T through a tapping fro ed by a set of auxilia pe heat exchangers a process water for FGE tank of minimum (norr t of this tank shall be closed loop primary circ ed near DM water s	ystem auxiliaries. os shall discharge oling of the FGD shall be suitably ridual Flue Gas liary coolers shall to the suction of The secondary m CW blowdown ary cooling water and the discharge D system. mal) capacity of 5 connected to the cuit shall be taken torage tank and	
1.09.00 C 1.09.01 A II C S S S S S S S S S S S S S S S S S	COOLING W A centralized in the primal cooling wate system auxil branched o Desulphuriza be connecte DMCW pump circulating w water. This booster pum secondary w For the prim Cu.M shall b closed circuit from the DI emergency n would be give	ATER SYSTEM (ECW SYSTEM (combined ECW system is enviry ry circuit, Demineralised cooling er through plate type heat exch iaries. The outlet header from p ff to supply cooling water ation system Auxiliaries coolers. d back into a common return H os to complete the closed loop pr ater system shall receive water water will be further pressurise ps and fed through the plate ty ater from PHEs shall be used as ary cooling circuit, an overhead he provided by the bidder. Outle t return header. Make up to the co M water transfer pumps locate nake up from the discharge of co	M) isaged for both FGD s water (DMCW) pump nangers (PHE) for coo plate heat exchangers to the to the indiv Outlet from these auxi header and led back rimary cooling circuit. T through a tapping fro ed by a set of auxilia pe heat exchangers a process water for FGE tank of minimum (norr t of this tank shall be closed loop primary circ ed near DM water s	ystem auxiliaries. os shall discharge oling of the FGD shall be suitably ridual Flue Gas liary coolers shall to the suction of The secondary m CW blowdown ary cooling water and the discharge D system. mal) capacity of 5 connected to the cuit shall be taken torage tank and	
1.09.01 A II S b D D D D D D D D D D D D D D D D D D	A centralized in the primal cooling wate system auxil branched o Desulphuriza be connecte DMCW pump circulating w water. This pooster pum secondary w For the prim Cu.M shall b closed circuit from the DI emergency n would be give	d/combined ECW system is envi ry circuit, Demineralised cooling er through plate type heat exch iaries. The outlet header from p ff to supply cooling water ation system Auxiliaries coolers. d back into a common return h os to complete the closed loop pr ater system shall receive water water will be further pressurise ps and fed through the plate ty ater from PHEs shall be used as ary cooling circuit, an overhead be provided by the bidder. Outle t return header. Make up to the o M water transfer pumps locate nake up from the discharge of co	isaged for both FGD s water (DMCW) pump hangers (PHE) for coo plate heat exchangers to the to the indiv Outlet from these auxi header and led back rimary cooling circuit. T through a tapping fro ed by a set of auxilia pe heat exchangers a process water for FGE tank of minimum (norr t of this tank shall be closed loop primary circ ed near DM water s	bs shall discharge oling of the FGD shall be suitably ridual Flue Gas liary coolers shall to the suction of The secondary m CW blowdown ary cooling water and the discharge D system. mal) capacity of 5 connected to the cuit shall be taken torage tank and	
1.09.02 fi fi e v	water. This booster pum secondary w For the prim Cu.M shall b closed circuit from the DI emergency n would be give	water will be further pressurise ps and fed through the plate ty ater from PHEs shall be used as ary cooling circuit, an overhead be provided by the bidder. Outle t return header. Make up to the o W water transfer pumps locate nake up from the discharge of co	ed by a set of auxilia pe heat exchangers a process water for FGE tank of minimum (norr t of this tank shall be closed loop primary circ ed near DM water s	ary cooling water and the discharge D system. mal) capacity of 5 connected to the cuit shall be taken torage tank and	
1.09.03 N	Maior ECW				
		system shall be comprising of	f		
	CW	L shall provide one cold water he pump discharge pipe/service wa 430 T/hr			
	DM	CCL shall provide DM water tapping from each normal and emergency M make up system (existing) for makeup requirement. Make up water equirement shall be 01-02 T/hr			
		ot secondary water pipe from the PHE's, discharging into the FGD system process water.			
	(d) 2x10	00% capacity self-cleaning straine	ers on the secondary s	ide.	
	(e) 3 x 5	0% (2 working + 1 standby) cap	acity of plate type heat	exchangers.	
	(f) 4 x Cool	50% (2 Working + 2 standby) ling water pumps, along with driv) capacity FGD Auxili res.	ary (Secondary)	
	(g) 3 x 5 pum	50% (2 Working + 1 standby) cap ps along with drives.	pacity FGD DM (Prima	ry) cooling water	

		DETAILED PROJECT RE SYSTEM	PORT FOR FGD	एनरीपीसी NTPC	
CLAUSE NC).	DESCRIPTION			
	(i) Alkal valve (j) Pipin pumj pumj	Overhead DM water tank (ECW i (Sodium Hydroxide) prepara es etc. g for normal makeup to ECW o, piping for emergency makeup o, other piping, fittings, supp umentation and electrical equipn	tion tank, agitator a tank from existing E to ECW tank from co orts, valves and spe	DM water transfer ondensate transfer ecialties including	
1.10.00		& WASTE TREATMENT AND D	ISPOSAL SYSTEM		
	Installation of suggested t	of zero liquid discharge for FG o discharge waste water to waste water will in range of 35-4	D Plant will be costly ash slurry sump. T	y and hence it is he approximately	
	waste water be complete shall be of S shall be prov	ste water tank shall be provided with all the units operating at De with Agitator, level transmitter teel construction with rubber linir vided for pumping the waste wa shall be neutralized (lime dosing	esign point. The Waste s etc. The waste wat ng. 2x100% horizontal ter from tank to ash w	e water Tank shall ter collection tank centrifugal pumps	
2.00.00	AC & VENTILATION SYSTEM FOR FGD PLANT				
		n for FGD Plant will be provided ing and Switch gear room will b vstem.			
3.00.00	FIRE DETECTION AND PROTECTION SYSTEM:				
	Tapping for hydrant/HVW/MVW system shall be provided by employer from nearby existing header.				
	1 Hydrant System:				
	 Complete hydrant system (pipe, hydrant valves, landing valves, water monitors, hoses, branch pipes and nozzles etc) for FGD area shall be provided as per TAC norms. HVW Spray System: Automatic fire detection cum high velocity water spray system shall be provided for various transformers (having oil capacity 2000 liters or more) envisaged under FGD system. MVW Spray System: Automatic fire detection cum high velocity water spray system shall be provided for various transformers (having oil capacity 2000 liters or more) envisaged under FGD system. 				
			indiff velocity water sp	PAGE 15 OF	

		DETAILED PROJECT REI SYSTEM	PORT FOR FGD	नरीपीसी NTPC		
CLAUSE	NQ.	DESCRIPTION				
	4 Fi TI th Pi C	arious cable galleries envisaged u re Extinguishers ne following quantity (minimum) e same at various locations of FC ressurized water type (9 lit. capac O ₂ type (4.5 kg Cap IS:15683): 5 ry chemical type (6 kg Cap IS:156	of fire extinguishers and SD system as per TAC req city as per IS 15683): 5 No Nos.	uirement.		
4.00.00	COMPRES	ED AIR SYSTEM				
	instrumentat	ssed air system shall consist o s, Air Drying (ADPs) Plants, ai ion and control, control panels, ork, service air-piping network etc	r receivers for each Air compressed air piping, li	compressors,		
house and c the downstr		compressors shall be dried in res elivered to the Air receivers. Fro eam of Air receivers, one comm nstrument air requirement for FG	m the Compressed air pip on header to be provided	ing header at		
5.00.00	GUARANTEES					
	The Proposed Performance Guarantees which attract Liquidated Damages (LD) are as follows					
	1. SO ₂	removal Efficiency				
	2. Limestone consumption of FGD system					
	3. Auxi	3. Auxiliary Power Consumption				
	4. Availability of FGD Plant					
	Guarantees systems/ e	s (The parameters/capabilities quipment)	s shall be demonstrated	l for various		
	1. Wet ball Mill capacity at rated fineness					
	2. Wet	2. Wet ball Mill wear parts guarantee				
	3. Wet	3. Wet ball Mill ball consumption				
	4. Vac	uum Belt Filter Capacity				
		sum Purity		89		
		te Water consumption		-1 -4- \		
		ormance characteristics of fans				
	9. Pas	gins on fans in case Booster Fa senger cum Goods Elevator fo ding:				
	ENI TPP STAGE-I (600 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-5 PROPOSED FGD SYSTEM	PAGE 16 OF		

	DETAILED PROJECT REF SYSTEM	ORT FOR FGD	एनरीपीसी NTPC
AUSE NO.	DESCRIPTION		
10. Nois	e		
11. Mist	Outlet Droplet Content		
12. Avai	lability of FGD Plant		
13. Air C	Conditioning System		
14. Vent	tilation System		
15. Com	pressed Air System		
16. Equi	pment Cooling Water System		
		S	2
1. State 1.			
	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-5	PAGE 17 OF

		DE	ETAILED PROJECT REPORT FOR FGD SYSTEM				
CLAUSE NO	<u> </u>	DESCRIP	TION		-		
			CHPATER-6 FGD CIVIL				
1.00.00	LANE	DEVEL	OPMENT				
	from levelle forma Desul FGL o	lations. N RL (+) 1 ed at the ation leve Iphurizatio	f the proposed site for FGD atural ground levels in the FGI 45 to 150m. Area proposed time of construction of the exi or finished ground level (FG on (FGD) unit shall be coming y area is at RL 144.00m. Thus 00m.	D plant area, as per conto for the FGD plant, has sting power plant. The m L) is at RL (+) 144.0m. up beyond the existing	already been ain plant block The Flue Gas chimney. The		
1.01.00	GEOT	GEOTECHNICAL DATA & FOUNDATION SYSTEM					
	boreld is see surfac very l decor 30.00 water	ogs from en that, in ce to abo Dense Si mposed r om and ex table as	carrying out site levelling for chimney area referred from all general, sandy silty clay/ clay out 2.8 to 4.00m depth. This st ity Fine Sand With ranging fr ock/ highly weathered sandst tending up to the final explore a observed in the boreholes t depths ranging from 3.00 m t	bove Geotechnical Investion ey silty sand layer is met ratum is underlain by Bro om 4.00m to 8.00m white one of thicknesses range ad depth in most of the bo- at the time of investigation	tigation Report, from the groun ownish & Grayis och is followed b ing from 8.00 t oreholes. Groun ation (2010) wa		
	As per above report, results of chemical test on soil and ground water samples indicate that no special protective measures are required for cement and reinforcement during construction. Portland Pozzolana Cement (PPC) has been considered for foundations with grade of concrete as M25. Minimum slope of 1V:1.5H for deep excavation is to be considered.						
	Existi Acco supp be pr syste geote	ing powe rdingly, F orted on rovided w em for F(ation System: or plant facilities are support GD System including lime st open foundations (isolated/ co with annular raft/ full raft found GD system units as well chi investigation to be carried	orage & disposal arrang ombined/ raft foundation) lation at suitable depth. mney shall be adopted	ement shall be . Chimney may The foundation based on the		
SINGAREI	NI TPP S		FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-6 FGD CIVIL	PAGE 1 OF 6		



SCCL	DE	TAILED PROJECT REPO SYSTEM	ORT FOR FGD	एनरीपीसी NTPC	
CLAUSE NO	DESCRI	PTION	and the second second		
1.02.00	FGD SYSTEM	M UNITS.			
1.02.01	Structural Sy	vstem			
	1. Lime Sto	ne Crusher House			
	which in turn	se shall be of structural steel w or slabs shall be of RCC. Crush will rest on vibration isolation g has been considered for floors	ners shall be supported on system consisting of sp	n RCC deck slab	
	2. Crushed	Lime Silo			
	Silo of adequate number and volume of structural steel will be specified in mechanical portion along with covering overhead structural shed and access platforms/walkways shall be provided.				
	3. Cable and	d Pipe Racks			
	Structural steel trestles and galleries with provision of walkway with grating shall be provided for supporting overhead cables and pipes in the main plant and outlying areas. However, for below ground routing, RCC trench with removable pre-case concrete covers / box culverts shall be provided.				
	4. Limeston	e Conveyor Galleries & tresti	es.		
	Overhead lim roofing. Trans steel framed	nestone conveyor shall be of sfer points and intermediate su structures. The staircase shall b	structural steel frame w pporting trestles shall be	vith cladding and made of braced	
1.02.02		d Structures: e Underground Reclaim Hopp	ors including Tunnel a	nd Pent	
	house Tunnel from chemical inje	reclaim hopper to pent hous ection grouting and polymer n tment. Ironite flooring will be p shall be designed for movem	e shall be of RCC co nodified cementitious co provided on tunnel floori	onstruction with pating as water ng. The hopper	
	Pent house s foundations e	hall be of R.C.C framed structuret.	res with columns, beams	, slabs and	
1.02.03	Other Buildi	ngs/ Structures:			
	1. Gyps	um Storage Area			
	These shall be etc. Cladding	be R. C. C. framed structures wi shall be of 230mm thick brickw	th columns, beams, slab ork with plastering on bo	s and foundations th sides.	
	NI TPP STAGE-I 600 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-6 FGD CIVIL	PAGE 2 OF 6	

		ETAILED PROJECT REPO SYSTEM	ORT FOR FGD	एनरीपीसी NTPC		
LAUSE NO.	DESCR	IPTION				
	2. Elec	trical cum Control Room Build	ling			
	It shall have Control room	RCC framed structural arranger n shall be air-conditioned area w	nent with brick cladding & ith false ceiling.	RCC roof slab		
	3. Mill Recycle Pump House					
	Pump houses shall have RCC framed structural arrangement with brick cladding & metal deck roofing filled with RCC.					
	 Auxiliary and equipment cooling water pump house Civil Foundation/structure for Tanks: 					
		eup Water Tanks				
		orbent Tank e Water Tank				
		ate Water Tank				
		ondary HC Feed Tank				
	f. Aux	liary Steam Tank				
1.02.04	Civil Conce	pts				
	Control room internal partitions shall be provided with single or double glazing in aluminium framework. Roof shall be provided with elastomeric membrane or other suitable water proofing treatment.					
	be of alumi	all generally be of aluminum. Do nium frame with glazing or parti h fire proof doors. Hollow metal vaults etc.	icle board panels. All fire	exits shall be		
	Entire FGD plant area shall be provided with paving in combination with interlocking					
	concrete blo	concrete blocks and high wearing resistant concrete.				
1.02.05	Architectural Concepts					
	be in c structure design,	ngs and structures shall be arch omplete harmony with the exi es and environment. Due consi and interior design All finish	sting main plant building iderations shall be given es for floors, walls, ceil	g, surrounding to landscape ling, structura		
	elements, partitions for offices and industrial areas shall be suitable for their aesthetics, durability and functional requirements and shall include the latest building material & technology.					
SINGAREN	I TPP STAGE-I	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-6 FGD CIVIL	PAGE 3 OF		

Aller Allerer.

	DE	TAILED PROJECT REPO SYSTEM	ORT FOR FGD	ल्नरीपीसी NTPC
CLAUSE NO.	DESCRIP	TION		
1.03.00	 the existing into exposed as elements. c. For adequishall be fold. d. All the buil Code requise. e. During de finishes as f. Human satisf. g. Due consider during the minimum left. All public left environme i. All the buil Ground Was j. Overall em the nature 	ldings shall be architecturally	puilding and in a comprehe d of buildings, its facade restles, bus ducts, and o tional Building Code reco designed to meet the Nati fication as prepared shal s of design criteria. erve and protect the existin tion during construction an r construction workers. In the principles of providin ons. take care of Rain Water g eco-friendly architecture,	nsive manner e, equipment, other service mmendations ional Building I govern the ng Landscape nd provide for g barrier free Harvesting &
	I II TPP STAGE-I 00 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-6 FGD CIVIL	PAGE 4 OF 6

SCCL	DE	TAILED PROJECT REF SYSTEM	ORT FOR FGD	एनरीपीसी NTPC		
CLAUSE NO.	DESCRIPT	FION .	1. 1. I. I. I. I.			
		ghtning protection and avia ction phase also.	tion obstruction lightin	g shall be provided		
1.04.00	ROADS & DR	AINS				
	Single Lane F	Roads				
	wide with 3.75 of roads.	All access roads to all buildings/facilities/structures shall be single lane roads 6.75m wide with 3.75m wide bituminous pavement and 1.5m wide shoulders on both sides				
	Drains					
	drains shall be	e constructed on both side e connected to the trunk dr side plant boundary. All drai	ain suitably, which fina	ally gets connected to		
	1					

	DE	TAILED PROJECT REPO SYSTEM	ORT FOR FGD	एनरीपीसी NTPC
CLAUSE NO.	DESCRIP	TION		
		<u>CHAPTER-7</u> <u>ELECTRICAL SYST</u>	<u>EM</u>	
1.00.00	FGD System system, DC F	shall cover aspects of Electrica including Auxiliary Power Su Power Supply system and asso ring & protection, control & mo ment.	upply system, Emergen ciated Transformers, Sv	icy Power Supply vitchgears, cables
2.00.00	POWER SUF	PLY SYSTEM		
2.01.00	STAGE-I, 2X	600MW		
	consist of 2X 600MW rating the 400 kV S Transformer (Two) numbe rating 100MW through 132 switchyard th (ST#1&2). Ea Transformers kV, 3.3 kV & The designed	hi Thermal Power Plant, Jaip 600MW (unit # 1&2). The unit g and the Generation voltage is Switchyard through 3X1-phase, and evacuated through 4 (four rs 132kV transmission lines em /A, 400 kV/132 kV/ 33 kV (YN kV transmission lines. The sta rough two (2) nos. 100/50/50 ach generator is connected to (UT#1A&1B) to meet the unit a 0.415 kV are adopted for feed I fault levels for 11 KV & 3.3 KV and 45 kA rms for 1 second for	# 1 & 2 consist of two s 21 kV. The Generators 260MVA, 21/420 kV S r) numbers transmission hanating from the power a0d11) is used to trans art-up power is being de MVA, 400/11.5 kV Sta two (2) nos. 31.5MVA auxiliary loads. Three vo ling the main plant and V systems shall be restr	are connected to sare connected to Step-up Generato a lines (400KV), 2 station. An ICT of smission of powe erived from 400kV ation Transformers a, 21/11.5 kV Uni- litage levels i.e. 1 off-site auxiliaries
2.02.00	from the exis	PANSION y source 1 & 2 for all the comr ting units station boards, howev source shall be shifted to new e	ver in case of the expansion	sion of the existing
	I TPP STAGE-I 00 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICAL	PAGE 1 OF 19

		DETAILED PROJECT REPORT FOR FGD SYSTEM		
CLAUSE NO	D. DESCRI	PTION		
3.00.00		QUIREMENT AND SOURCING e to be installed for Unit # 1&2.	OF POWER FOR FGD	
	for Stage-I co system main	ring the merits, a wet flue gas o onsist of 2X600MW of Singaren y consists of following systems/ n system.	i Thermal Power plant. The	
	Lime storPrimary gGypsum	n system. ne preparation system. ypsum dewatering system. dewatering system. water system.		
	Lime storGypsumPrimary g	duct booster fans and dampers he handling system. handling system. ypsum dewatering system/Gyp storage system.		
	Process	vater system. system/ others miscellaneous sy	/stem.	
	levels i.e. 11	upted electrical power require kV. 3.3kV & 0.415 kV which are eding power to the plant auxilia	e already adopted in the ex	-
	The total connected load expected for proposed FGD system will 15.0-18.0MW for 600 MW unit. However, the maximum running loads will 9.0 – 12.0MW for 600 MW unit. The total connected load requirement fo TPP (2X600MW) will be around 36 MW. The electrical system shall be proposed FGD loads. The auxiliary power consumption for introduction of contribute around 1.2%–1.5%.			s will be around ent for Singarer Ill be design fo
	Desulphuriza	uirement has been considered tion (FGD) system. There may para for 600 MW unit based on	be a minor variation of loa	ads as indicated
	NI TPP STAGE-I 600 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICAL	PAGE 2 OF 19

		DETAILE	ED PROJECT REPO SYSTEM	ORT FOR FGD	एनरीपीसी NTPC	
CLAUSE NO).	DESCRIPTION				
	mee	et the FGD power	supply source has bee requirements.	n identified as the be	est available option	
	To Unit avai mot rem	# 1&2 by utili lable in Unit boa ors. Spare feed	y Boards, 11kV Uni eders as a main su feeding the power s on boards shall be nsformers of adequat	upply. Spare feeder supply to Booster fa utilized to meet th		
	Power supply source 1 & 2 for all the common system of FGD of Stage-I& considered from Stage-I, however after commissioning of Stage-II, the 2 nd s be shifted to Stage-II Station Boards suitability.					
		ordingly, scheme ched as EXHIBIT	for sourcing of power F - E1.	GD has been develo	ped. Detail scheme i	
4.00.00	RET	RETROFITTING / REPLACEMENT OF 11 kV BOARDS WORK				
 a) The nominal current rating of existing BH kV Station Auxiliary Boards of Unit # 1&2 meet the power requirement of FGD retrofitting of 2 (four) numbers 11 kV feed including associated items. b) Scope shall also include necessary m transformer feeders in the Unit boards i Booster fan motor feeders including chan c) Energy meters shall be provided in all a existing Station board from where FGD tapped and Booster fan Motor feeders purpose. The energy meters shall be having an accuracy class of 0.2 or better package shall be integrated with existing 			&2 is 630A, which nee GD. Scope shall inde eeders identified for F modification to be s into motor feeders ange of relays. If above feeders (2 N GD power other than ers in Unit board) for be microprocessor to ter. The energy mete	eds to be upgraded to clude replacement GD with 1250 A CE done in the existing for utilizing them a los, of feeders in the booster fan shall b or energy accounting based. MWH meter rs supplied under the		

	DE		TAILED PROJECT REPO SYSTEM	ORT FOR FGD	एनरीपीसी NTPC
CLAUSE NO	0.	DESCRIP	ΓΙΟΝ		
5.00.00	PRC	POSED S	SYSTEM / EQUIPMENT REQU	IREMENT	
	and insur rece asso	inspectio rance, de ipt & unlo ociated civ	system is proposed for design n at manufacturer's works, livery to site including custor pading, handling & storage, in il, structural and architectural poment/ system and works of fo	packing, supply, t m clearance/port cle n plant transportatio works, Testing & c	ransportation, transi earance (if required) on, erection including
			FGD Transformers V FGD Auxiliary transformers		
	• +	HT Switche	gears		
		T Switchg			
	100		ves/Motors		
		and the second	 Battery and Battery Charger bling, Earthing, Lightning Prote 		
			utdoor Lighting etc.	ection etc.	
			Protection system		
		/FD			
	• 0	DG Set			
	• (Other Asso	ciated electrical system		
	. (Bill of Qua	ntity for electrical system is att	ached at end of this	chapter)
6.00.00	PRO	POSEDS	YSTEM / EQUIPMENT DESC	RIPTION	
	Dura Syst Para	ition, Sizir em, AC meters o	sophy of Electrical System De ng criterion of equipment, Aux & DC Emergency Power S f Electrical System to be P rief for the purpose of detailed	diliary Power Supply upply System, Tech rovided for propose	Schemes, MV & L nnical Features and ed FGD system and
6.01.00	GEN	IERAL			• •
	a)	The prop	oosed typical scheme shall be for FGD Auxiliary Power Distrik		E1 Titled "Single line
	b)		burpose of design of equipmer tigrade and relative humidity o		
	c) d)	The equi All equip	pment shall operate in a highly ment shall be suitable for rat 5%, and 10% combined variation	polluted environmer ed frequency of 50H	nt. Iz with a variation c
		TAGE-I	FLUE GAS	CHAPTER NO-7	PAGE 4 OF 19

		DE	TAILED PROJECT REPO SYSTEM	ORT FOR FGD	एनटीपीसी NTPC
CLAUSE NO.		DESCRIP	TION		
5.02.00	EQUI	PMENT	LAYOUT CRITERIA		
	1.	The fo	llowing clearances to be maint	ained for control pane	s/cabinets
		a)	Inter panel spacing	- 1200mm	or out in toto.
		b)	Clearance from back	- 1000mm	
		c)	Clearance from front	- 1000mm	
		d)	Clearance from side wall	- 1000mm	
		The a	above clearances are minimu se in door swing of the cabinet	im requirement and	may increase wit
	2.	shall I cable	able vault space below the HT nave 800 mm wide and 2.1m trays in the cable vaul maintenance of cables.	high movement pas	sage all around th
	3.		ate distance shall be maintai ines following norms will be adl		nsformers. As bas
	a)	and fro	transformers shall be separa om each other by a minimum of hours of fire resisting of hours of fire resisting of hours are relief vent whichever is high	distance as defined be eight at least 600 m	elow or by a fire wa
		Oil cap	pacity of individual transformer	Clear separating di	stance
		(in litre	es)	(in Meters)	
		5,000	to 10,000	8.0	
		10,001	I to 20,000	10.0	
		20,001	1 to 30,000	12.5	
		Over 3	30,001	15.0	
		In case of auxiliary transformers having an aggregate oil capacity in excess of 2000 liters, the minimum separating distance between transformers and surrounding building shall be at least 6M unless they are separated by fire separating walls. For transformers rated above 10 MVA or transformers having an aggregate oil capacity in excess of 2000 liters, high velocity water spray system or nitrogen-based injection system shall be employed.			
	4.	Provide a state of the second state of the	t requirements for Electrical nces shall be maintained for H		oms. The followin
		a.	Front Clearance		
			i) For one Row of Swgr.	- 2.0M (Min)	
SINGAREN (2X6	I TPP ST 00 MW)	AGE-I	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICAL	PAGE 5 OF 15

DE		TAILED PROJECT REI SYSTEM	PORT FOR FGD	एनरीपीसी NTPC		
CLAUSE NO.	DESCRIP	TION				
		ii) For two Rows of Swgr. iii) Back Clearance	- 2.5M (Min) - 1.5M (Min.)			
	b.	Side Clearance				
	at both	00 mm, however provision t n ends. Therefore, end clea vorking space - 1200mm (Are	rance shall be 800+widt			
	The fo	llowing clearances shall be n	maintained for LT Switch	board.		
	a.) Fro	ont Clearance				
		i) For one Row of Swgr	- 1.5M (Min)			
		ii) For two Rows of Swgr	- 1.5/1.75M depending	g upon room size		
	b.) Ba	ack Clearance				
		i) For single front ii) For double front	- 1.0M (Min) - 1.5M (Min)			
	c.) Sid	e Clearance				
	fut pa	n. 800 mm, however provis ure at both ends. Therefore nel. HT Switchboard cleara switch boards are in the sar	e, end clearance shall be ances shall be followed	e 800 mm + width		
	Height	of HT/LT Switchgear Room i) With Bus Duct ii) Without Bus Duct	– 4.5 m (min) – 4.0 m (min)			
6.03.00	SHORT CIRC	UIT LEVELS AND WITHST	AND DURATION			
	The system fault level even during unusual modes of operation must not exceed the switchgear fault handling capabilities. The maximum fault levels at various voltage levels shall be limited to following:					
	1) 11 kV: 40	kA breaking with 100 kA (pe	eak) making			
	2) 3.3 kV: 40	2) 3.3 kV: 40 kA breaking with 100 kA (peak) making				
	3) 0.415 kV: 45 kA breaking with 105 kA (peak) making.					
	 4) For the calculation of fault levels, the short circuit levels of 400 kV EHV systems shall be considered as 50 kA. 					
SINGARENI	TPP STAGE-I	FLUE GAS	CHAPTER NO-7	PAGE 6 OF 1		

(93

	De	ETAILED PROJECT R SYSTE		GD	एनरीपीसी NTPC
CLAUSE NO.	DESCRI	PTION			
	5) The diffe capabilitie	rent equipment shall be s es:	ized for the follo	wing through	fault withstar
	∘ Aux. t	ransformers (11/0.433 kV,	11/3.45 kV):	2 seconds	
	o 11 kV	bus duct		1 second	
	° o 3.3 k∖	/ bus duct		1 second	
		s to the feeders protected with 0.12 seconds minimum		ain protection	fault clearir
	o Cable	s for all other feeders - As	per the fault clearing	ng time of fus	es.
	o 11 kV	V / 3.3 kV cables sheath 2 seconds for adopted ground fault current			
	positiv transfo	witchgear, motor control re, fool-proof interlocking ormers are not operated in gear capability except dur eover.	g to ensure th n parallel and fau	at different It level does	supplies ar not exceed th
	o DCDE	20 KA for 1 secon	d		
6.04.00	H.T. SWITCHGEAR				
	Contractors of motors, which Communicab Switchgears.	shall be indoor, metal of cum fuse units may be us h require comparatively fr le Numerical Relay for pro All the relays shall be for Monitoring and Supervi	ed for auxiliaries equent switching. tection, control, m networked to a c	such as con The switchgo etering and m ledicated HN	veyors/crushe ears shall hav nonitoring of th
	MV switchgears shall be of 11 kV and 3.3 kV Voltage levels. The Switchgears shall be Indoor, Metal clad, single front and fully compartmentalized, with degree of protection IP42 for breaker/contactor compartment and IP52 for metering/relay compartments.				
All busbars shall be color coded. All busbars shall be provided with nor heat shrinkable polymer sleeves having excellent performance environments and reduces the noxious and corrosive effects in fire si sleeves shall be of tested design as per relevant IEC/ASTM/equivalent				erformance in ects in fire sit	n high voltag uations. Busb
		d fault level for 11 kV, 3.3 k Switchgears shall have an			
	TPP STAGE-I	FLUE GAS DESULPHURISATION SYS		ER NO-7	PAGE 7 OF 1

	DE	TAILED PROJECT REPO SYSTEM	ORT FOR FGD	एनरीपीसी NTPC
CLAUSE NO.	DESCRIP	TION		
	voltages (uni before openir Circuit Break single pole mechanism. of any load and induction mot The high volt type. The fus operate only mechanical t controlled mot Protection Communicab	age contactors shall be of AC-3 se and overload relay shall be for a fault current less than its in rip indication. Surge suppress	provided to ensure hey comprise of three hrough a common for Switching transfor at direct-on-line starti direct-on-line starti direct-on-line starti sutilization category a fully coordinated, so terrupting capability. sors shall be provide ction, control, meter ovided for automation	that Breaker is of e separate identic shaft by a sturc rmers and motors ing of squirrel cag and shall be vacuu to that the contact The fuses shall hav ed on all contact
	. > 11 kV	3.3 kV Incomers		
		ing MV/LV Transformers Break	ers	
		eakers		
		ouplers		
		ransfers & Synchronization		
		omers Feeders		
		s Couplers		
		tgoing Feeders (Breaker Contro	olled)	
	a) For variou proposed	us feeders including motor feed and these units shall commun rocess interlocks/logics are dev	der numerical relays (icate remotely to PLC	DDCMIS. For Mot
	TPP STAGE-I 0 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICAL	PAGE 8 OF 1

SEDL	D	ETAILED PROJECT REPO SYSTEM	ORT FOR FGD	एनरीपीसी NTPC	
CLAUSE NO.	DESCR	PTION			
	protectio	nerical relays proposed shall be n features of all type of protecti emote locations and interface wi	ons, control. and met	shall have integrated tering, self-diagnosis	
	the prop offers m diagnost flexible reduced CTs/ VT	e technical and economical, op osed automation system with I ore functionality (with respect to ic checks, reliability, trending an engineering. Economically the cost of maintenance and operat s and their VA burden will also ay also reduce the overall height	Numerical relays. Te both protections as y id monitoring, ease of system will reduce tions and less down to be reduced. The a	chnically the system well as Control), self f operation and more e extensive cabling imes. The number of	
	an indep	I IEC 61850 is proposed for con pendent subsystem connected communication interface. IEC 6	to the automation	structure through	
	Numerical following a	relays with communicable pplications:	features shall be	procured with th	
	individua	n, metering and control schem I breaker panel shall be configication features of the relays.		2	
	data con data flov The circ (DDCMI	elays shall be networked to a di centrator for Monitoring and sup y shall be linked to DDCMIS as cuit breaker will normally be S) through closing and shunt interlocks/logics are developed in	well through switchg controlled from rer trip coils. However,	aker panels. All suc ear SCADA System note control panel	
		and relay contacts shall be hard being done presently.	I wired to DDCMIS fo	r building board wis	
6.05.00	BUSDUCT				
	air coole are env Switchge between	duct will have on all aluminium ed. The degree of protection sha isaged for connecting betwee ear. Non-segregated phase be LV service Transformer and 4 A and above.	all be IP-55. Segrega n MV service trans us ducts are envisa	ated phase bus duct aformer and 3.3 k aged for connectin	
	I TPP STAGE-I 00 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICA	PAGE 9 OF 19	

	D	TAILED PROJECT REPOR		ल्नरीपीसी NTPC	
CLAUSE NO.	DESCRI	PTION			
6.06.00	FGD TRANS	FORMERS / AUXILIARY TRAN	SFORMERS		
	Line Diagram under most o DB shall be	ransformers and Auxiliary Trans FGD System Drg attached as E onerous conditions, with the crite fed by 2x100% or 3 X 50 % tra the maximum load expected to b	Exhibit-E1 and as per system eria that each 415 V swite ansformers / feeders, and	em requiremer chgear / MCC	
	margin at de	ransformers (11/0.433 kV, 11/3.4 sign ambient conditions after corns and the No Load Voltage Corn	nsidering final load requir		
	All these transformers will be delta connected of the LT/MV side. The LT (0.433 kV side) star point kV side) star point will be earthed through resistant 300A. These transformers shall be mineral oil fit transformer forced cooling with temperature cont			d. The MV (3.4) I fault current to Ilation, dry type	
		age Correction Factor (=Transfor for sizing of all transformers i.e.	rmer No Load voltage/ rat	ed bus Voltage	
	The transform	ner size = the calculated size X n	o load voltage correction f	actor	
	Rating of the	transformers shown in the SLD	are indicative.		
6.07.00	MOTORS				
	All motors are required to have a voltage within permissible limits both during starting and during normal running. In line with 500MW unit size practice, the standard three voltage level scheme i.e. 11 kV, 3.3 kV & 415V system has been adopted. All equipment's shall be suitable for rated frequency of 50 Hz with a variation of +3% & 5%, and 10% combined variation of voltage and frequency				
	 Auxiliary power system shall be designed in such a way that, voltage variation at different voltage levels do not exceed the limits given below under worst operating conditions at equipment terminal. 				
	ii) HT and LT Motors shall be designed to operate in this specified voltage variation:				
	I TPP STAGE-I 00 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICAL	PAGE 10 OF 1	

		ETAILED PRO	JECT REPOR	RT FOR FGD	एनरीपीसी NTPC	
CLAUSE NO.	DESCR	DESCRIPTION				
	Motor rati	ing	(Un	tage drop der normal ining)	Starting Voltag requirement (Min) a motor terminal	
	Below 110) KW	10%	þ	85%	
	Above110 200 KW	KW to	10%	,	80 %	
	201 KW KW	to 1000	6%		85%	
	1001 KW KW	to 4000	6%		80%	
	Above 400	0 KW	6%		75%	
1	voltage to 7 the applicati difference	0% of the rated v on of 150% of the between the res	alue for a durati rated voltage fo sidual voltage	on of 2 seconds r at least 1 seco and incoming	 Motors shall withstan nd caused due to vector supply voltage durin 	
	voltage to 7 the applicati difference changeover caused by s	0% of the rated v on of 150% of the between the res of buses. The mo uch bus transfer w	voltage dips in alue for a durati rated voltage fo sidual voltage otors shall be ca vithout damage.	on of 2 seconds r at least 1 seco and incoming pable of withsta	. Motors shall withstan nd caused due to vecto supply voltage durin	
	voltage to 7 the applicati difference changeover caused by s	0% of the rated v on of 150% of the between the res of buses. The mo uch bus transfer w level for motors sl	voltage dips in alue for a durati rated voltage fo sidual voltage otors shall be ca vithout damage.	on of 2 seconds r at least 1 seco and incoming pable of withsta	s. Motors shall withstan nd caused due to vecto supply voltage durin nding the inrush currer gle phase 240V AC / 3	
	voltage to 7 the applicati difference 1 changeover caused by s The voltage a) Up to 0.1 b) Above 0	0% of the rated v on of 150% of the between the res of buses. The mo uch bus transfer w level for motors sl 2 KW 0.2 KW and up to 2 00 KW and up to 2	voltage dips in alue for a durati rated voltage fo sidual voltage otors shall be ca vithout damage. hall be as follows	on of 2 seconds r at least 1 seco and incoming pable of withsta s: : Sin pha : 3 p	ase, 415V AC hase, 415V AC hase, 3.3 kV AC	
	voltage to 7 the applicati difference 1 changeover caused by s The voltage a) Up to 0.1 b) Above 0 c) Above 0 c) Above 2 d) Above 1 Motors shal Outdoor loc totally enclo TETV/ CAC rated 3000k	0% of the rated v on of 150% of the between the res of buses. The mo uch bus transfer w level for motors sl 2 KW 0.2 KW and up to 2 00 KW and up to 2 00 KW and up to 2 00 KW and up to 2 500 KW I have IP-54 degre ation. The All mot osed tube ventilate A type shall be p KW or above can d in hazardous are	voltage dips in alue for a durati rated voltage fo sidual voltage otors shall be ca vithout damage. hall be as follows 200 KW 1500 KW ee of protection ors shall be eith ed (TETV) or Cl provided with sha be closed air ci eas shall have fla	on of 2 seconds r at least 1 seco and incoming pable of withsta : S: S: Sin pha : 3 p : 3 p : 11 for Indoor moto er totally enclose osed air circuit aft mounted fans rcuit water coole me proof enclos	s. Motors shall withstand and caused due to vector supply voltage during inding the inrush current gle phase 240V AC / 3 ase, 415V AC hase, 415V AC hase, 3.3 kV AC kV rs location and IP-55 for ed fan cooled (TEFC) of air cooled (CACA) type is only. However, Motor ed (CACW). Motors an	

		DET	AILED PROJEC	T REPOR	T FOR FGD	एनरीपीसी NTPC
CLAUSE NO.	D	DESCRIPT	RIPTION			
	all LT up to 2 Motors contin tempe IEC:60	motors of 200 kW s s and EF nuous du erature), 0034-30.	stance method. Suita of rating above 30 k shall be controlled fro PB located in hazard ty LT motors up to shall be Premium The Crane duty mot s shall be Shunt wou	W and all H ⁻ m LT switch ous areas s 200 KW Efficiency c ors shall be	T motors. Motors o gear through Air C shall have flame pr Output rating (at class-IE3, conform	of rating 110 kW an ircuit Breaker. roof enclosures. Th 50 deg. C ambier ing to IS:12615, c
6.08.00	415 V	OLT LT	SWITCHGEAR			
	The LT transformers shall feed power to the 415V switchgears, which in-turn would distribute power to various MCC's located at load centers. The 415V system will have duplicate incomer and bus coupling arrangements so that a changeover can be made from either of the two step down transformers to restore power in case of failure of one of the above two transformers. The 415 Volts switch boards shall be indoor, draw-out type compartmentalized with air break circuit breakers.					
	Contro with H Super The ir	ol, meter HT netw rvision of nbuilt fea	gears shall have Co ing and monitoring o ork for common HI all the breaker pane ture of numerical rel notified metering reg	f the Switch MI through Is. All such o ays shall be	gears. All the relay data concentrator data shall be linked	s shall be integrate for Monitoring an to DDCMIS as we
	Key Design Features for LV switchgears					
	(1		switch gear motor co tc. shall be of metal			
	a b c s c a	and MCC be of fixe charged, switchboa circuit bre	ngears (circuit break shall be fully draw o d module type. Circu horizontal draw o ards, MCCs and DB eaker housing, cable I be designed to mee	ut type single uit Breakers out type, s s shall have alley and rel	e/ double front and shall be of air brea suitable for elect e distinct vertical s ays. Cable termina	ACDB & DCDB sha ak, three pole, sprin trical operation. A ections for bus ban tions located in cab
SINGAREN (2X6	I TPP ST 00 MW)	rage-i	FLUE GAS DESULPHURISATION	SYSTEM	CHAPTER NO-7 FGD ELECTRICAI	PAGE 12 OF 1

		DE	TAILED PROJECT REPO SYSTEM	ORT FOR FGD	एनरीपीसी NTPC	
CLAUSE NO	0.	DESCRIP	TION			
	c)	switchboa supported currents.	s-section of the bus bars sl ard and both horizontal as we and braced to withstand the The bus bars for switchboard nterleaving arrangement.	Il as vertical bus bar stresses due to the	s shall be adequate specified short circu	
	d)		e bus-bar system of all switc all be PVC sleeve insulated.	hgears, MCCs, ACD	Bs, DCDBs and fus	
6.09.00	CRI	ITERIA FO	R AUXILIARY POWER SUP	PLY ARRANGEMEN	т	
		he auxiliary power supply system must form a reliable source of power for FGD uxiliaries The requirements to be met by the auxiliary system are as follows: -				
		The auxiliary power supply system shall be designed with suitable margin to enable the satisfactory operation of the system with voltage and frequency limits as defined.				
		b) The overall system shall be such that failure of any piece of equipment has the minimum possible effect on the plant's capability. In particular failure of a transformer, section of LT or HT switchgear, DC battery or charger shall no reduce the plant's capability or affect the safe shut down requirements of the plant.				
		etc. shall switchgear transforme	for mechanical auxiliary system be met by auxiliary transfor /MCC/Distribution board shorts prs/feeders and, these shall o be imposed. Each of the al	ormers based on th all be fed either by be rated to carry	e criteria that eac / 2xl00% or 3x50 the maximum loa	
		standby a jeopardize switchgea	practicable the system shall uxiliaries so that failure of s the standby auxiliary fe MCC sections shall be prov ensure the equipment safety.	supply to main auxil eed. Automatic cha	iary shall in no wa angeover at critic	
		fool-proof operated	ngear, motor control centers a interlocking to ensure that di in parallel and fault level do ing momentary paralleling in	fferent supplies and bes not exceed the	transformers are n switchgear capabili	
	f)	All equipm	ent such as switchgear & all	transformers shall be	e sized so as to hav	
SINGARE	ENI TPP : X600 MW		FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICA	PAGE 13 OF 1	

(100

DE DE		TAILED PROJECT REPO SYSTEM	DRT FOR FGD	एनरीपीसी NTPC		
CLAUSE NO.	DESCRIP	TION				
	requireme g) Transform optimized conditions	gin at ambient temperature nts at peak conditions at corre er voltage ratios, taps, impede that the auxiliary system volt are always within permiss to unacceptable voltages duri 5.	esponding ambient. ances and tolerances the ages under the various ible limits and the equ	ereon shall be s grid and loadin lipment are no		
6.10.00	CHANGEOVE	R SCHEMES				
	order to provid system, Manu adopted. The functional grou along with its d	f failure of normal source, pro de better reliability for the sys al/Auto changeover scheme control logic for the incomer up of station (C&I) DCS. The control logic. The scheme enal ization through synchro check	tem. Fast changeover so for 3.3 kV and 415 V and tie breakers are built manual change-over so bles manual closing of inc	cheme for 11 k ¹ system shall be t in the electrication heme is realized		
6.11.00	DC SYSTEM	C SYSTEM				
	batteries, and emergency lig level of redun batteries and o	C system shall comprising o two nos. of float cum boost hting, protection, annunciation dancy would be achieved with chargers. Each of the unit batt FGD for a period of 60 minute	chargers to supply pow , indications and control on the interconnections be teries shall be sized for su	ver to DC loads etc. The require tween these two upplying the tota		
	timers etc. sha	system, comprising of batte all be suitable for continuous on ng suitable temperature correct	operation at the maximum			
	intermittent lo blackout cond intermittent lo shall be sized correction fac considered. T	sizing shall be done based bads including motor starting ition, for the duration specified ads shall be considered with considering a minimum elect stors as per relevant standa the no. of cells, end cell vo d maximum voltage window	y (wherever applicable) so as to meet the system minimum 1 minute dura rolyte temperature along ard. An ageing factor of ltage shall be considere	under complet requirement. A tion. The batter with temperatur of 1.25 shall b ed based on th		
	intermittent lo shall be sized correction fac considered. T minimum and requirement.	ads shall be considered with considering a minimum elect stors as per relevant standa The no. of cells, end cell vo	minimum 1 minute dura rolyte temperature along ard. An ageing factor o ltage shall be considere	tion. with of 1. ed b		

(10)

		DETAILED PROJECT REPORT FOR FGD					
CLAUSE NO	D. DESCRI	PTION					
	chargers ea consumer is number of fe Boost/ fast of technical red must be capa DCDB) plus must have su battery is no capable of b charged cond DC Health I battery cell of System, it s	a shall comprise of two nos. of the ch rated for 100% capacity. Do fed from two different bus se eders on each section. Tharging time shall be as per wo uirements recommended by bar able of supplying all the continuo the trickle charging current of bo ufficient surplus capacity for runn of drained during testing of the boost/ fast charge the battery from dition without imposing any limital Monitoring Systems shall be pro of 220V battery banks on-line or hall be possible to measure & so that any damage to batt	c scheme shall ensure the ections. DCDBs shall pre- erst operating condition are ttery manufacturer. Each us D.C. loads (fed through th the batteries. In addition ing of the largest D.C aux a same. Battery charger in completely discharged of tions under worse operations ovided to monitor the con- a 24x7 basis. With DC He analyze the individual of	nat each critic ovide adequa nd would satis battery charg n both section n, each charg iliary so that th should also h condition to fu ng conditions. andition of ea ealth Monitorin cell and batte			
6.12.00	EMERGENO	Y POWER SUPPLY SYSTEM					
	power failure applications conditioning/ as lime slure	shutdown of the plant under e e, diesel generating set shall b like battery chargers, ventilation and all auxiliaries ne y tank agitators, oxidation agitato be fed by one diesel generator o	e installed for feeding of emergency lighting, cessary for safe operation ors. Etc). The FGD emerg	ertain essent essential n of plant (su			
		One no. Diesel Generator (DG) shall be provided as indicated in the single line diagram and sizing of DG set shall be to suit the emergency FGD loads.					
	(LTP) rat	DG set shall be 415 V, 1500 RPM and Engine BHP rating shall be Limited time runnin (LTP) rated Engine as per ISO 8528-1. DG set shall be provided with acousti enclosure. DG set shall start automatically in case of power failure of AC power.					
	the requirem	ding stack height, acoustics, air e lent given by gazette notification B guidelines, all statutory require lines.	s of Ministry of Environme	nt & Forest til			
	ENI TPP STAGE-I (600 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICAL	PAGE 15 OF			

(102)

		DE	TAILED PROJECT REP SYSTEM	ORT FOR FGD	एनरीपीसी NTPC
CLAUSE NO.		DESCRIP	TION		1
6.13.00	PRO	TECTIVE	RELAYING		
	provid dama	ded for H age to ec	y protective relaying system IV switchyard transformers, quipment in case of fault a nils to be provided for the equ	motors, auxiliary system nd abnormal conditions.	n etc., to minimize
1.1	FGD	TRANSF	ORMER		
	1.	Back-u	p over current protection on I	HV and LV side (51T).	
	2.	Restric	ted earth fault protection (64)	R) on HV & LV side.	
4	3.	Back-u	p earth fault protection on LV	′ side (51 N).	
	4.	Buchol	z relay, winding temperature,	oil temperature and oil le	evel alarm and trip.
	5.	Fire pro	otection to trip it's HV side bre	eaker.	
	6.		reaker back up (or breaker fa sformer.	ailure) protection for the k	oreaker on HV side
	7.	Over flu	uxing protection (99T).		
6.14.00	CABI	LES			
	condu insula rating	uctor wou ated cable	single core and three Cou uld be employed. For 415 as with aluminium conductor ulticore XLPE/PVC insulated ratings.	V and DC systems, would generally be used	single core XLPE I for higher current
			all be laid overhead/ in trencl all be laid on overhead trestl		er plant cabling for
	multic trenct trestle Ethyle	core, PVC hes or dir es/pipe ra	I be suitable for Un-Earthed insulated with copper condu- ectly buried. Inter plant cablin acks. For HT cable, single lation (XLPE) insulated ca	uctors. The cables shall b ng for main routes shall b core and three core	e laid overhead/ in e laid on overhead Cross linked Poly
		ne cables erties.	s shall be armored type w	ith Flame Retardant Lo	w Smoke (FRLS)
SINGARENI (2X60	TPP ST	TAGE-I	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICAL	PAGE 16 OF 19

SCCL		DE	TAILED PROJECT REPO SYSTEM	ORT FOR FGD	एनरीपीसी NTPC
CLAUSE NO.		DESCRIP	TION	2	
6.15.00	FIRE	PROOF	CABLE SEALING SYSTEM		
	entry cable shall a The fi resista The fi shall	below co e entry al also be p fire proo tance ration fire seal s	strict the propagation of cable ontrol panels, cable penetratio pove switchgears need to be rovided to meet the segregation f cable penetration seal sys ing and shall fully comply with t system shall be completely ga eir integrity and perform satisf	n through walls, cables sealed by fire seal sys on/ separation requirement tem shall have minimu he requirement of BS:47 s & smoke tight, mecha	on the floors and tem. Fire barriers nts. um one hour fire 6 Part-8. unically stable and
6.16.00	GRO	UNDING		* 1 <	
	switch	hyards, F	ling mats employing suitable GD area, pump house etc, t its. All the connections above t	for keeping the step ar	nd touch potential
	at lea rate o Grour	ast forty (of corrosic nding FC	ystem for plant and switchyard 40) years, for a system fault c on of steel fcr selection of earth 6D plant, switchyard and ot hall be provided in accordance	urrent of 50 kA for 1.0 s hing conductor shall be 0 her areas or buildings	sec. The minimum 0.12mm per year. Is covered in the
	1	connection ng earth g	n of earthing grid of extended grid.	l portion of FGD shall t	be connected with
6.17.00	LIGH	ITING SY	STEM		
	lightin outdo	ng distrib	ting arrangement shall be m ution boards, panels, LED Lun . However, for DC lighting, l ype luminaries shall be used.	ninaires for the lighting	of all the indoor &
	fixture statio	es will all on AC su	g of the plant will operate with t so have arrangement for bein upply. Emergency DC lighting I strategic locations.	g fed from diesel gener	ators on failure of
	4				
SINGAREN (2X60	I TPP ST	TAGE-I	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICAL	PAGE 17 OF 19

DE		SYSTEM				
CLAUSE NO	D. DESCR	IPTION	PTION			
6.18.00	CABLING					
	bank etc. as laying of ca attached as availability o	and their accessories with sup a required for the cables for the able from employer board as a Exhibit-E1 on the employers' r of space and suitability. In case essary arrangements shall be	complete system. T shown in Electrical nearest trestle in the of non-availability of	his shall also includ Single Line Diagra FGD area subject space in employer		
	cable tags, control cable	ies such as rigid/ flexible condui Straight-through jointing kits fo es, Cable termination kits for HT clamps, Junction boxes and ma	or HT XLPE power of XLPE power cables,	cable, LT power an Welding receptacle		
	Fire proof ca	able penetration sealing system tc.	of Type-A and Type	-B for cable gallerie		
6.19.00	PAINTING F	PAINTING FOR ELECTRICAL EQUIPMENT				
	The thicknes 100 microns	y of all electrical equipment sha as of finish coat shall be minimur s). However, in case electrosta uipment, minimum paint thicknes	m 50 microns (minim atic process of paint	um total DFT shall b ing shall be for ar		
6.20.00	CONSTRUC	TION POWER				
	Employer sh of power to suitably rate provided as may also h associated	construction power requirement all provide two (2) nos. 415V fee meet the construction power required lsolation Transformers alor per requirement. LT Packaged be used for this purpose. Sur Instrument transformers and M s shall be provided at each Const	eders in LT switchgea uirements at the vari- ng with LT distribut d Sub-stations with i itable metering arra Metering Cubicles m	ars. Further extension ous locations through ion boards shall the solation transforme ingement along with neeting the DISCO		
6.21.00	VARIABLE FREQUENCY DRIVE (VFD)					
5.21.00	The VFD s Inverter (VS a range as	ystem shall be either Current I) type. The system shall be suit per the requirement of driven s of IEEE 519 for the harmonics	able for linear continu equipment. The sy	uous speed control f vstem shall meet th		
	NI TPP STAGE-I 600 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7 FGD ELECTRICA	THE TRACT OF CODE POCK PERKID OF		

	DE	TAILED PROJECT REPO SYSTEM	RT FOR FGD	एनरीपीर्स NTPC
CLAUSE NO.	DESCRIP	TION		*
7.00.00	transferred to Overload, Ea and applicabl suitably prote same design System shall for VFD applie The auxiliary by utilizing th 2A&2B for u switchgear bo FGD system. To make the power & aux control & mo	power supply bus as well as our rth fault, Overvoltage, Over-spe e for the system shall be provided cted against over voltages, surg so as to ensure 100 % inter be of IGBT based or latest tech	eed, Negative seque ided. All the circuit ges, lightning etc. All rchangeability of co nology. The VFD Mo to be sourced from switchgear boards (1 spare feeders of utilized for all comm of from separate DG I system like DC Po s, cables, cabling, r ed electrical system	ence, etc as requir components shall the VFDs shall be mponents. The VI otors shall be suital 11kV existing syste A&1B for unit#1 a Station Transform non services loads set. ower Supply syste elaying & protectio
SINGAREN	TPP STAGE-I	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-7	PAGE 19 OF

CLAUSE NO. DESCRIPTION CHAPTER-8 FGD SYSTEM - CONTROL & INSTRUMENTATION 1.00.00 GENERAL The function of the Control & Instrumentation System woul achieving safe and efficient operation of the unit, resulting of system. The C&I system would be of the type which nor of continuous duties and would take pre-planned corrective process or if unsafe trends or conditions develop in any startup, shutdown, normal working and emergency cond system would be such as to permit on-line localization, is fault in the minimum possible time. 2.00.00 CONTROL ROOM CONFIGURATION & LAYOUT It is proposed to have air-conditioned Common Control R at appropriate place near FGD system with OWS/EWS. The would be located in air-conditioned Room. UPS, 24V D would be located in the air conditioned environment. 3.00.00 CONTROL & MONITORING PHILOSOPHY Control Desk (UCD) for mounting monitors / Keyboards (K In line with recent practices, Remote operation with OWS: operation facility shall also be provided depending on the la For DDCMIS based standalone FGD control system I exchange of data in the main plant control room for the charge/shift-in-charge etc. through Station Wide LAN. 4.00.00 MEASURING INSTRUMENTS (PRIMARY & SECONDAR Primary measuring instruments such as transmitters measurement of parameters like pressure, temperatu (Continuous Emission Monitoring System) analyzers (SO2/Nox/CO/CO2/O2/Hg-Mercury/particulate matters at etc) would be used.	^{GD} एनरीपीसी NTPC
 I.00.00 GENERAL The function of the Control & Instrumentation System woul achieving safe and efficient operation of the unit, resulting of system. The C&I system would be of the type which nor of continuous duties and would take pre-planned corrective process or if unsafe trends or conditions develop in any startup, shutdown, normal working and emergency cond system would be such as to permit on-line localization, is fault in the minimum possible time. 2.00.00 CONTROL ROOM CONFIGURATION & LAYOUT It is proposed to have air-conditioned Common Control R at appropriate place near FGD system with OWS/EWS. The would be located in air-conditioned Room. UPS, 24V D would be located in the air conditioned environment. 3.00.00 CONTROL & MONITORING PHILOSOPHY Control Desk (UCD) for mounting monitors / Keyboards (K In line with recent practices, Remote operation with OWS operation facility shall also be provided depending on the la For DDCMIS based standalone FGD control system I exchange of data in the main plant control room for the charge/shift-in-charge etc. through Station Wide LAN. 4.00.00 MEASURING INSTRUMENTS (PRIMARY & SECONDAR Primary measuring instruments such as transmitters measurement of parameters like pressure, temperatur (Continuous Emission Monitoring System) analyzers (SO2/Nox/CO/CO2/O2/Hg-Mercury/particulate matters and (SO2/Nox/CO/CO2/O2/Hg-Mercury/particulate matters and starters and starterex and starters and starterex and starterex and starters and	
 The function of the Control & Instrumentation System woul achieving safe and efficient operation of the unit, resulting of system. The C&I system would be of the type which nor of continuous duties and would take pre-planned corrective process or if unsafe trends or conditions develop in any startup, shutdown, normal working and emergency cond system would be such as to permit on-line localization, is fault in the minimum possible time. 2.00.00 CONTROL ROOM CONFIGURATION & LAYOUT It is proposed to have air-conditioned Common Control R at appropriate place near FGD system with OWS/EWS. The would be located in air-conditioned Room. UPS, 24V D would be located in the air conditioned near FGD Content. Emodular power supply shall be located near FGD Content. 3.00.00 CONTROL & MONITORING PHILOSOPHY Control Desk (UCD) for mounting monitors / Keyboards (K In line with recent practices, Remote operation with OWS: operation facility shall also be provided depending on the la For DDCMIS based standalone FGD control system I exchange of data in the main plant control room for charge/shift-in-charge etc. through Station Wide LAN. 4.00.00 MEASURING INSTRUMENTS (PRIMARY & SECONDAR Primary measuring instruments such as transmitters measurement of parameters like pressure, temperatu (Continuous Emission Monitoring System) analyzers (SO2/Nox/CO/CO2/O2/Hg-Mercury/particulate matters and (SO2/Nox/CO/CO2/O2/Hg-Mercury/particulate matters and (SO2/Nox/CO/CO2/O2/Hg-Mercury/particulate matters and sone particulate matters and sone particulate matters and sone particulate matters and sone particulate matters and (SO2/Nox/CO/CO2/O2/Hg-Mercury/particulate matters and (SO2/Nox/CO/CO2	<u>)N</u>
 It is proposed to have air-conditioned Common Control R at appropriate place near FGD system with OWS/EWS. The would be located in air-conditioned Room. UPS, 24V D would be located in the air conditioned environment. Emodular power supply shall be located near FGD Content environment. CONTROL & MONITORING PHILOSOPHY Control Desk (UCD) for mounting monitors / Keyboards (K In line with recent practices, Remote operation with OWS a operation facility shall also be provided depending on the last operation facility shall also be provided depending on the last control room for the charge/shift-in-charge etc. through Station Wide LAN. MEASURING INSTRUMENTS (PRIMARY & SECONDAR Primary measuring instruments such as transmitters measurement of parameters like pressure, temperatu (Continuous Emission Monitoring System) analyzers (SO2/Nox/CO/CO2/O2/Hg-Mercury/particulate matters and stransmitters and stransmi	n cost effective operation ally relieves the operator actions in case of drift in regime of operation viz- tions. The design of C&
 Control Desk (UCD) for mounting monitors / Keyboards (K In line with recent practices, Remote operation with OWS a operation facility shall also be provided depending on the la For DDCMIS based standalone FGD control system I exchange of data in the main plant control room for the charge/shift-in-charge etc. through Station Wide LAN. MEASURING INSTRUMENTS (PRIMARY & SECONDAR Primary measuring instruments such as transmitters measurement of parameters like pressure, temperatur (Continuous Emission Monitoring System) analyzers (SO2/Nox/CO/CO2/O2/Hg-Mercury/particulate matters ar 	e control system cabinets Modular Power Supply tteries for UPS & 24 V
Primary measuring instruments such as transmitters measurement of parameters like pressure, temperatu (Continuous Emission Monitoring System) analyzers (SO2/Nox/CO/CO2/O2/Hg-Mercury/particulate matters ar	well as GIU based loca rout of the control room. k shall be provided for
All instruments in slurry lines shall be provided with isolat All temperature elements shall be provided with Tempe Ultrasonic Level Transmitters shall be provided for slurr manual suction valves shall be provided with open limit s be provided with field indicators for local level indications provided with level gauges for local level indications.	sensors etc. for the e, level, flow & CEMS with associated items alyzers & Flue gas flow n valves and diaphragm ature Transmitters. Only tanks/sumps. All pumps itch. All slurry tanks shal

		DETAILED PROJECT		एनरीपीर्स NTPC
CLAUSE N	10.	DESCRIPTION		
5.00.00	DISTRIBU (DDCMIS)	TED DIGITAL CONTROL, M	ONITORING & INFORM	ATION SYSTE
	Monitoring	y indicated above, micropro & Information System (DDCM nt operation of complete FGE	IIS) would be provided for	r the safe, reliabl
	information 100% inter performed supervisory status. Cha	and alarm monitoring as men rchangeable (i.e. control or m from any screen) and wor y and display functions for co anges in system configuration enance functions would be don	tioned above. Each of the nonitoring for any part of ald provide complete co ontrol system variables an n, tuning constants and s	screens would b the plant can b ontrol, monitoring nd control system imilar engineerin
		numbers of printers would be this, historical data storage an		
	be envisag	unciation System and Sequen ged to be performed in DDCN stem for the project.		
6.00.00	POWER S	UPPLY SYSTEM (UPS & DC	SYSTEM)	
	Machine Ir parallel rec Ni-Cd Batt Stabilizer,	ted Power Supply (UPS) synterface (HMI). The UPS for F lundant Chargers and Inverters ery Bank for one (1) hour d Static switch, manual bypass s devices and accessories.	GD C&I system would c s with Input Isolation Trans uty, Bypass Line Transfo	onsist of 2X1009 sformers, 1X1009 ormers & Voltag
	be provide shall consi Cadmium	nt 24V DC modular DC powe d for FGD independent contro st of 2 sets with each compr batteries for one-hour duty, he DC load requirement of Cor	I system. Each set of pov ising of 1x100% chargers 1x100% DC distribution I	wer supply syster s, 1x100% Nicke
		Battery health management s 24VDC power supply system a		provided for eac
7.00.00	Control va	VALVES, ACTUATORS & A alves and dampers would b s. However, for few applica	e pneumatically operated	d in most of th ctuators would b
	employed. valves and	Microprocessor based positio	ners shall be provided for	pneumatic contr
	TPP STAGE-I 00 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-8 CONTROL & INSTRUMENTA	ATION PAGE 2 0

		DETAILED PROJECT I SYSTE		एनरीपीसी NTPC
CLAUSE N	NO.	DESCRIPTION		а 1
8.00.00	All instrum would be v overall she	ENTATION CABLES entation cables including both with Fire Retardant Low Smo eath. Multi pair cables of 0.5 erever required, pre-fabricated	ke (FRLS) type Poly Vir sq. mm. shall be used e	extensively for C&I
9.00.00	INTERFAC SYSTEM	ING OF FGD CONTROL S	STEM WITH MAIN PL	ANT CONTROL
	system and damper sta Load Inde implementa unit to be p minimum n DI – 130, shall be pr exchange per unit fro	Signal exchange: Hardwired s d FGD control system (to be atus, inlet and outlet gates s ex (BLI), MFT etc. shall be ation of protections and interfe- blaced in Central Equipment Ro- number of hardwired signal exc DO $-$ 130, AI $-$ 50 and AO $-$ rovided in main plant control with FGD control system. 2 (To m existing charger to be cons- e located in CER. Cabling from	located in FGD control tatus, ID Fans status, E e envisaged on as re ocks. One Remote Input com (CER) for the same. change to be considered 50 (approximately). San system by employer for two) nos. of 24V DC pow sidered by employer, for	room) like bypass SPs status, Boiler equired basis, for t Output (RIO) per IOs and cables for per unit as follows ne number of I/Os hard wired signal wer supply feeders powering said RIO
10.00.00	DENOx C	ONTROL SYSTEM		
	for modifie system in additional mimics sha SADC actu flow eleme	e NOx reduction, modification ad combustion system shall main plant with some addition field instruments as per sys all also be modified according uators, Instrument air piping, ents, different instruments, cab as per actual requirements du	be done from employer a/modification in I/O cards tem requirements. Log ly in employer's control s Burner tilt power cylinde ales, copper tubing, powe	's existing control s to accommodate ic, alarms & HMI system. Change in r, Filter regulators,
	I TPP STAGE-I 00 MW)	FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-8 CONTROL & INSTRUMENT	ATION PAGE 3 OF

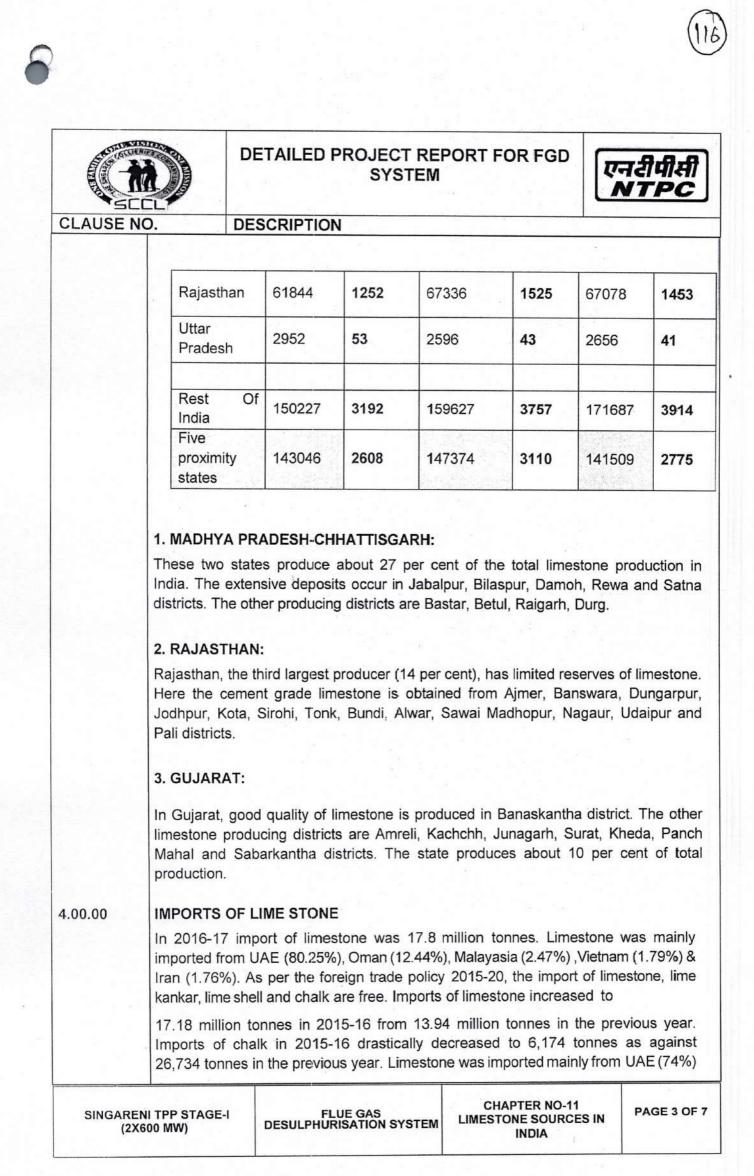
	DETAILED PROJECT REPO SYSTEM		एनदीपीसी NTPC
CLAUSE NO.	DESCRIPTION		
	DECONTINION		
and the second	CHAPTER-9		
	LAYOUT REQUIREME	ENT	
FOR FU	JE GAS DESULFURIZATION SYSTEM		
downstre All these	stem generally comprises of absorb systems like lime stone handling, lim am systems like waste treatment & dis systems require necessary space in an are the major equipment in FGD syste	nestone milling. FGD sposal, Gypsum hand nd around flue gas do em	also has other lling & disposal.
	MAIN EQUIPMENTS IN F	GD AREA	
	1. Isolation Dampers for FGD		
	2. Booster Fans		
	3. Ductwork, Expansion joints and D	Juct supports	
	4. Absorber tank		
	5. Absorber recirculation pumps		
	6. Oxidation air blowers		
	7. Waste water tank		
	8. Neutralization tank		
	 Auxiliary storage tank Unloading hopper 		
	11. Vent Filter		
	12. Crushed Lime Stone Silos		
	13. Lime Stone Crusher House		
	14. Lime stone Slurry Tanks		
	15. Lime stone slurry pumps		
	16. Wet ball mill, mill recycle tank, mil	Il recycle pump	
	17. Primary Hydrocyclone Classifier		
	18. Secondary Hydrocyclone classifie	ər	
	19. Primary HC feed tank and pump		
	20. Secondary HC feed tank and pur	np	
	21. Belt filter wash pump		
	22. Mist Eliminator wash pump		
	23. Filtrate water tank		÷.
	24. Vacuum Filter Tank		
	25. Vacuum Filter Pump	ter Tank)	
	26. Makeup water tank (Process Wat 27. Gypsum handling system		
	27. Gypsum nandling system 28. Gypsum storage area		
	29. ECW system		
	20. 2011 0,000		

UD

		DETAILED PROJECT RE	PORT FOR FGD	एनरीपीसी NTPC
LAUSE NO.		DESCRIPTION		
	1. (2. 7 3. (4. (5. \ 6. (7. (8. / 9. (9. (9. (10. (equirement for FGD System Unloading Hopper Transfer Tower Lime Stone Crusher House Crushed Lime Silo Wet Belt Mill Area Gypsum Storage Area Bed Filter Area Absorber Area(including reagent tank make up water tank, pumps etc) for b MCC/Control Room Booster Fan Area for one unit Electric control Room, Switchgear		OM 3.0M 3.5M 2.0M 3.0M 5.5M 5M 5M
F		drawing is prepared and attached with ng drawings(tentative) has been also a		
	S.no	Drawing No	Drawing layout	
-	S.no	Drawing No	Drawing layout	
	1	9972-999-POC-F-001	General Layout Plan	1
	1 2	9972-999-POC-F-001 CONS-ENGG-9972-FGD-DPR-001	General Layout Plan Layout plan of FGD	system
-	1 2 3	9972-999-POC-F-001 CONS-ENGG-9972-FGD-DPR-001 CONS-ENGG-9972-FGD-DPR-002	General Layout Plan Layout plan of FGD Scheme of FGD abs	n system sorber system
-	1 2	9972-999-POC-F-001 CONS-ENGG-9972-FGD-DPR-001	General Layout Plan Layout plan of FGD Scheme of FGD abs Scheme of FGD mill	n system sorber system
-	1 2 3 4	9972-999-POC-F-001 CONS-ENGG-9972-FGD-DPR-001 CONS-ENGG-9972-FGD-DPR-002 CONS-ENGG-9972-FGD-DPR-003	General Layout Plan Layout plan of FGD Scheme of FGD abs Scheme of FGD mill Scheme of Gyp	n system sorber system ing system sum dewatering
-	1 2 3 4 5	9972-999-POC-F-001 CONS-ENGG-9972-FGD-DPR-001 CONS-ENGG-9972-FGD-DPR-002 CONS-ENGG-9972-FGD-DPR-003 CONS-ENGG-9972-FGD-DPR-004	General Layout Plan Layout plan of FGD Scheme of FGD abs Scheme of FGD mill Scheme of Gyp system	n system sorber system ing system sum dewatering e handling system
-	1 2 3 4 5 6	9972-999-POC-F-001 CONS-ENGG-9972-FGD-DPR-001 CONS-ENGG-9972-FGD-DPR-002 CONS-ENGG-9972-FGD-DPR-003 CONS-ENGG-9972-FGD-DPR-004	General Layout Plan Layout plan of FGD Scheme of FGD abs Scheme of FGD mill Scheme of Gyp system Scheme of limestone	system sorber system ing system sum dewatering e handling system handing system
-	1 2 3 4 5 6 7	9972-999-POC-F-001 CONS-ENGG-9972-FGD-DPR-001 CONS-ENGG-9972-FGD-DPR-002 CONS-ENGG-9972-FGD-DPR-003 CONS-ENGG-9972-FGD-DPR-004 CONS-ENGG-9972-FGD-DPR-005	General Layout Plan Layout plan of FGD Scheme of FGD abs Scheme of FGD mill Scheme of Gyp system Scheme of limestone Scheme of Gypsum	system sorber system ing system sum dewatering e handling system handing system stem e diagram for FGD

CHAPTER NO-9 LAYOUT REQUIREMENT

and a second sec		DETAILED PROJECT REPO SYSTEM	ORT FOR FGD	एनरीपीसी NTPC		
CLAUSE	NO.	DESCRIPTION				
		CHAPTER- LOW NOX BUR	RNERS			
1.00.00	SCCL Stage-I (2X600 MW) was commissioned in the year 2016 and units are und operation. The Boilers were originally designed for NOx level 260 gm/GJ (appro 750 mg/Nm ³ and the measured value is almost near to the designed value. As p the Gazette notification dated 15.12.2015 the NOx level to be reduced to 30 mg/Nm ³ . In order to reduce the NOx level Combustion Modification is to the undertaken in both units of SCCL Stage-I (2X600 MW).					
2.00.00	would be Combustion new redeat dampers. at required steam and formation	on modification to be carried out as a required to reduce the NOx g on modification consists of replacing/ signed wind box and installation of se The objective of combustion modifica d level during the combustion in boile d flue gas parameters, FEGT, SH a and slagging, water wall corrosion ads, under various mills combination to	peneration in com modification the exi eparator over fire ai ation is to reduce the without effecting the and RH Sprays, un due to reduced a	bustion chamber isting wind box by r panel along with ne NOx generated he designed boile burnt carbon, CC air atmosphere a		
	Major wo	rk involved in combustion modification	ations are :			
	New/modi four corne Power c Strengthe	Supply/ modification of Wind Box with Separate Over Fire Air (SOFA) panel New/modified Re-designed Wind box including new coal, oil and air nozzle tips for al four corners, New Re-designed Tilting Tangential Burner Assembly, Burner Til Power cylinders, Modification in coal piping, coupling & its supports Strengthening/modification of structure as required for carrying out combustion modification.				
	Major guarantees involved in combustion modifications are :					
	at 6% steam	emission : The total NOx at the ID Fa oxygen (O_2) content in flue gas or generator operation from 40% to 100 ied coal(s), with any mill combination,	n dry gas basis ove 0% TMCR load and	er entire range of for whole range of		
	(ii) <u>Furna</u> cross	nce Exit Gas Temperature (FEGT section shall be within +/- 20 deg C be): The variation in efore and after mod	FEGT along th		
	ash at	rnt Carbon Loss : The variation in u ESP hoppers and Bottom ash shall be and after modification.	unburnt carbon in co be within +0.3% and	orresponding to f 0.5% respective		


(112

		DETAILED PROJECT REPO SYSTEM	RT FOR FGD	एनरीपीस NTPC
LAUSE NO	Э.	DESCRIPTION		
	specificatio	t Steam Generator design parame n requirements are as follows:		s per the origir
	SI. no.	Description	100% BMCR	
	1.	Steam flow at superheater Outlet (T/hr)	1625	
	2.	Pressure at Superheater outlet kg/cm ² (abs)	178	
	3.	Temperature at Superheater	540	
	4.	outlet (Deg C) Steam flow to Reheater (T/hr)	1354.2	
	5.	Steam Pressure at RH inlet Kg/cm ² (abs)	44.89	
	<u> </u>	Steam temperature at RH inlet (Deg C)	336.3	
	7.	Steam Temperature at Reheater Outlet (Deg C)	568	

(113)

SECL		DETAILED PROJECT RE SYSTEM	일을 다 같은 것은 것에서 그 가지는 것이 없는 것이라. 그 것은 것 같아요.	एनरीपीसी NTPC
CLAUSE N	0.	DESCRIPTION		
	in the form and dolon CaMg (CC • Limes	<u>CHAPTE</u> <u>LIMESTONE SC</u> is a sedimentary rock component of the mineral calcite. The two ite. Limestone often contains m 3) ₂ or magnesite (MgCO ₃) mixed tone rocks are composed of mate of calcium and magnesium,	DURCES IN INDIA sed mainly of calcium of most important cons agnesium carbonate, d with calcite.	tituents are calcite either as dolomite
	 Limes phosy Limes seque Over the seque Chha 	tone also contains small qua horus and sulphur. tone deposits are of sedimenta nces from Pre-Cambrian to rece hree-fourths of the total product tates of Madhya Pradesh, tisgarh and Tamil Nadu.	antities of silica, alun ary origin and exist in ent rocks except in Gon ion of limestone of Ind Rajasthan, Andhra	all the geological dwana. ia is contributed by Pradesh, Gujarat,
	shells of m shallow sea A limestor centimetre	areous material used by indus olluscs deposited in the form of be s. "Marl", a lime rich mud which o e rock which separates wel s thick slab is termed 'flagston d ornamental stone.	eds as well as present in contains variable amoun l along the stratifica	n ancient lakes and its of clays and silt. ation into a few
1.00.00	RESOURC	ES		
	The total NMI data million tor	reserves/resources of limesto based on UNFC system as on 1 nes, of which 16,336 million to and 1,86,889 million tonnes	.4.2015 have been es onnes (8%) are place	timated at 203,224 ed under reserves
	Andhra P Telangan 12% by o about 70	is the leading state having 2 adesh and Rajasthan (12% e (8%), Chhattisgarh and Mad her states. Grade wise, cemer % followed by unclassified g (11%) are different grades.	each), Gujarat (10%), hya Pradesh (5% eac nt grade (Portland) ha	Meghalaya (9%), ch) and remaining s leading share of

STONE PF production 2% as co were 77 Twenty m contrib of 15 m of the tota of the tota sof the tota of the tota	ompared to the seven mine outed 42% of the seven mine outed 42% of the seach in all production annually. The and two associates reported be seven the second by the second	ne in 2016 that of the p mines in 20 es each pro- of the total n the produ- n was contro- ne remainin sociated mi- but 77% of py public se g producin ollowed by nataka (10% Himachal nalaya, Od and Bihar. DNE BY ST		ainst 807 d e than 3 r of limestone of 2 to 3 r mines each total product oduction. A unting for desh & And arat, Tamil I each), and	luring the p million tonr e in 2016- million tonn h producing ction was re- venty five p About 3.3% 1% in the p (21%) of th hra Prades Nadu & Tel the remain	orevious hes per 17. The es was g 1 to 2 eported orincipal of the revious he total h (11% angana hing 5%
oroduction 2% as co were 77 Twenty m contrib of 15 m of the tota of the tota an tonnes 3 mines iccrs con iccion was othan was iccion of I b, Chhattis each), Ma contribute nu & Kash UCTION	n of limesto ompared to f '1 reporting seven mine- buted 42% of ines each in al production al production annually. Th and two ass tributed abo s reported b s the leadin imestone, for sgarh & Karn harashtra & ed by Megh mmir, Kerala OF LIMESTO	ne in 2016 that of the p mines in 20 es each pr of the total n the produ- n was contro- ne remainin sociated mi but 77% of py public se g producin ollowed by nataka (10% Himachal nalaya, Od and Bihar. DNE BY ST	orevious year 016-17 as ag oducing mor production o uction range ributed by 54 g 23% of the ines during the the total pre- ector mines a g state acco Madhya Prado % each), Guja Pradesh (4% isha, Uttar F	ainst 807 d e than 3 r of limestone of 2 to 3 r mines each total product oduction. A unting for desh & And arat, Tamil I each), and	luring the p million tonr e in 2016- million tonn h producing ction was re- venty five p About 3.3% 1% in the p (21%) of th hra Prades Nadu & Tel the remain	orevious hes per 17. The es was g 1 to 2 eported orincipal of the revious he total h (11% angana hing 5%
e were 77 Twenty m contrib of 15 m of the tota of the tota of the tota of the tota of the tota of the tota of the tota an tonnes an tonn	1 reporting seven mine outed 42% of nines each in al production annually. Th and two ass stributed abo s reported b s the leadin imestone, for sgarh & Karr harashtra & ed by Megh mmir, Kerala OF LIMESTO	mines in 20 es each pro- of the total in the produ- n was contri- sociated mi- but 77% of oy public se g producin ollowed by nataka (10% Himachal nalaya, Od and Bihar. DNE BY ST	016-17 as ag oducing mor production o uction range ributed by 54 g 23% of the ines during th the total pre- ector mines a g state acco Madhya Prad % each), Guja Pradesh (4% isha, Uttar F	ainst 807 d e than 3 r of limestone of 2 to 3 r mines each total production. A s against 4 unting for desh & And arat, Tamil I each), and	million tonr e in 2016- million tonn h producing ction was re- venty five p About 3.3% 1% in the p (21%) of th hra Prades Nadu & Tel the remain	nes per 17. The es was g 1 to 2 eported or in cipal of the revious ne total h (11% angana ning 5%
n tonnes 3 mines acers con action was action of I b, Chhattis each), Ma contribute nu & Kash UCTION oduction	annually. Th and two ass atributed abo s reported b s the leadin imestone, fo sgarh & Karr harashtra & ed by Megh hmir, Kerala OF LIMESTO	e remainin sociated mi but 77% of by public se g producin ollowed by nataka (10% himachal nalaya, Od and Bihar. DNE BY ST	g 23% of the ines during the the total pre- ector mines a g state acco Madhya Prad % each), Guja Pradesh (4% isha, Uttar F	total production. A oduction. A us against 4 unting for desh & And arat, Tamil I each), and	ction was reventy five p About 3.3% 1% in the p (21%) of th hra Prades Nadu & Tel the remain	eported orincipal of the revious ne total h (11% angana hing 5%
iction of I , Chhattis each), Ma contribute nu & Kash UCTION oduction	imestone, fo sgarh & Karr harashtra & ed by Megh hmir, Kerala OF LIMESTO	bllowed by nataka (109 Himachal nalaya, Od and Bihar. DNE BY ST	Madhya Prad % each), Guja Pradesh (4% isha, Uttar F	desh & And arat, Tamil I each), and	hra Prades Nadu & Tel the remair	h (11% angana ning 5%
v in MT·	n nearby sta	tes	.00 PRODUCTION OF LIMESTONE BY STATES Production of Limestone, 2014-15, 2015-16 to 2016 -17 (By Sta primarily on nearby states Qty in MT; Value in m INR			
			2106-17			
	Quantity	Value (mINR)	Quantity	Value (mINR)	Quantity	Value (mINR
dia	293273	5800	307001	6867	313196	6688
ujarat	26010	404	25622	437	24923	433
	12710	197	12390	218	11009	206
	39530	702	39430	887	35843	642
States India Gujarat Himach Prades Prades		Quantitydia293273ujarat26010machal adesh12710adhya39530	QuantityValue (mINR)dia2932735800ujarat26010404machal adesh12710197adhya39530702	QuantityValue (mINR)Quantitydia2932735800307001ujarat2601040425622machal adesh1271019712390adhya3953070239430	QuantityValue (mINR)QuantityValue (mINR)dia29327358003070016867ujarat2601040425622437machal adesh1271019712390218adhya adesh3953070239430887	Quantity Value (mINR) Quantity Value (mINR) Quantity Value (mINR) Quantity dia 293273 5800 307001 6867 313196 ujarat 26010 404 25622 437 24923 machal adesh 12710 197 12390 218 11009 adhya 39530 702 39430 887 35843

SCCL		DETAILED PROJECT SYSTI	एनरीपीसी NTPC	
CLAUSE	NO.	DESCRIPTION		
5.00.00	besides of Following provided limestone	17%), while chalk was imported other countries. I table the indicates list for in. However, the employer shall of or FGD system. NIOUS PRODUCERS OF LIME	producer/supplier of li take the expression of	mestone has bee
0.00.00			Location of mine	
	1		State	District
			Andhra Pradesh	Kurnool
			Chhattisgarh	Raipur
			Gujarat	Amreli
		a Tech Cement Ltd,	Karnataka	Gulbarga
		Wing,Ahura Centre,	Madhya Pradesh	Neemuch
	111	Floor, Mahakali	Maharashtra	Chandrapur
		ves Road, Andheri (E),	Rajasthan	Chittorgarh
		mbai-400 093,	najaotnan	Jaipur
	Mar	narashtra.		Nagaur
			Tamil Nadu	Ariyalur
			Turni Huduu	Perambalur
			Chhattisgarh	Raipur
		buja Cement Ltd,	Gujarat	Junagadh
	10). Ambujanagar,	Himachal Pradesh	Solan
		: Kodinar,	Maharashtra	Chandrapur
	Jun	lunagadh–362 715,Gujarat.	Rajasthan	Pali
		· · · · · · · · · · · · · · · · · · ·	Telangana	Adilabad
			Chhattisgarh	Durg
			Himachal Pradesh	Bilaspur
	11 1	ACC Ltd,	Jharkhand	Singhbhum (W)
	12	ment House, 121,	Karnataka	Gulbarga
	(1) 7770-3018785	harshi Karve Road,	Madhya Pradesh	Katni
		mbai – 400 020, Maharashtra.	Maharashtra	Yavatmal
			Rajasthan	Bundi
			Tamil Nadu	Coimbatore
		· · · · · · · · · · · · · · · · · · ·	Gujarat	Kachchh
		prakash Associates Ltd,	Madhya Pradesh	Rewa
		ctor – 128,		Sidhi
		ida – 201 304, ar Bradesh	Himachal Pradesh	Solan
	Utt	ar Pradesh.	Uttar Pradesh	Sonbhadra
	ENI TPP STAG	GE-I FLUE GAS DESULPHURISATION SYS	CHAPTER NO-1	

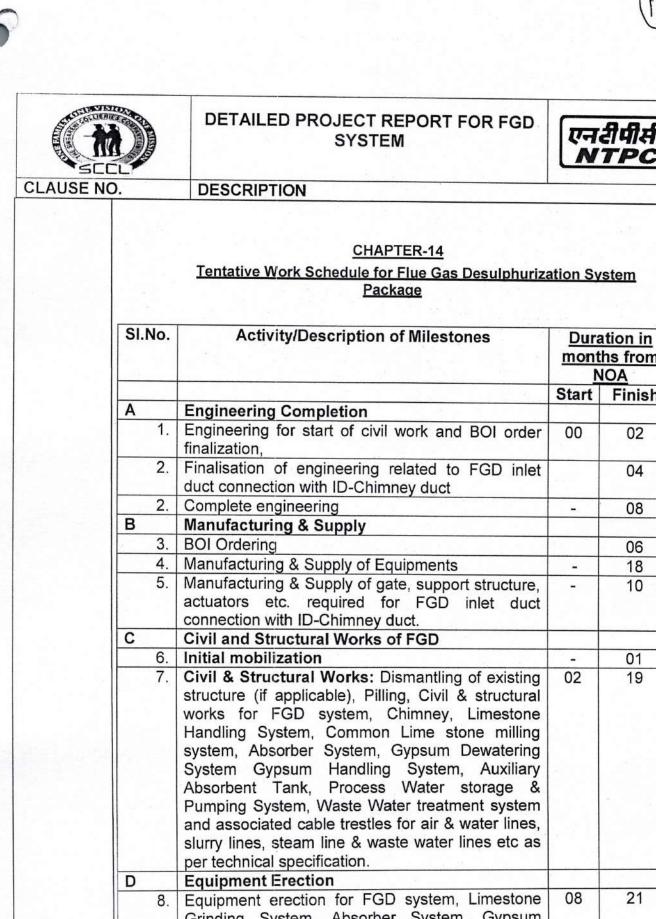

			DETAILED PROJECT SYST	ण्नरीपीर्स NTPC		
CLAUSE NO	Э.					
			e Cement Ltd,	Rajasthan	Ajmer	
	5	Post	ur Nagar, Box No. 33, rar – 305 901, Rajasthan <i>.</i>		Pali	
				Andhra Pradesh	Cuddapah	
			ndia Cement Ltd,	Telangana	Nalgonda Ranga Reddy	
	6 4 th F Cher		n Building" oor, 827,Anna Salai, nai – 600 002. Tamil Nadu.	Tamil Nadu	Ariyalur Perambalur Tirunelveli Thoothu- kudi	
	7	37/2,0 New ⁻ Dist -	i Cement Ltd, Chinar Park, Town,Rajarhat 24 Parganas - 700157, West Bengal.	Rajasthan	Virudhu- nagar Sirohi	
				Andhra Pradesh	Krishna	
		Madra	as Cement Ltd,	Karnataka	Chitradurga	
	8 Rama P.O.F Virud		amandiram, Rajapalayam–626117, n Nagar, Tamil Nadu.	Tamil Nadu	Ariyalur Perambalur Thoothu- kudi	
	Dalr		- O	Andhra Dradaah	Virudhu- nagar	
9 P. O Thiru Tam		P. O. Thiruc	a Cement Ltd, Dalmiapuram, chirapalli-621651, Nadu	Andhra Pradesh Tamil Nadu	Cuddapah Ariyalur Perambalur Thiruchira- palli	
Chet 6 th F 10 Hall 603,		6 th Fl Hall E 603, 7	inad Cement Corp. Ltd, oor, Rani Seethai Building, Anna Salai, nai – 600 006, Tamil Nadu.	Tamil Nadu	Ariyalur Dindigul Karur Perambalur	
	J. K. 11 Kam		Cement Works, a Tower,	Rajasthan	Chittorgarh Nagaur	
			ur-208 001, Uttar Pradesh	Karnataka	Bagalkot	
	12	9/1, F	ram Industries Ltd, 8. N. Mukherjee Road, ta – 700001.	Telangana Karnataka	Karimnagar Gulbarga	
SINGAREN (2X6)			I FLUE GAS DESULPHURISATION SYST	CHAPTER NO LIMESTONE SOUR		

(118)

			DETAILED PROJECT RI SYSTEM	an a	Ţ	नरीपीर्स NTPC		
CLAUSE NO	D.	D	ESCRIPTION		-			
	13		shmi Cement Ltd, kaypuram, ajasthan.	Rajasthan	Sirohi			
	14	Crescenz B-wing,1 C-38,C-3 Bandra K	ndia Private Ltd, zo Building 0th Floor 9,G-Block Curla Complex, East, 229, Nariman Point, 400 051.	Chhattisgarh	Janjg Raipu	ir- Champa, ır		
	15	Zuari Cer		Andhra Pradesh	Cudd	apah		
	15	Krishna N Yerragun	itla-516311,Andhra Pradesh	Telangana	Nalgonda			
	16	Rear Blo Premises	eral Dev. td, 3 rd Floor ck, HMWSSB, s, Khairatabad, ad – 500004.	Telangana	Adilat	bad		
	17	Birla Buil R. N. Mu	poration Ltd, ding,9/1 kherjee Road, - 700 001, West Bengal.	Madhya Pradesh Rajasthan	Satr Chit	ia torgarh		
	18	Bharathi Corporat 8-2-626, Road No	Cements ion Pvt. Ltd, Reliance Majestic, 10, Banjara Hills,	Andhra Pradesh	Cud	dapah		
	20 My Home 9th Floor, 19 My Home Hyderaba Andhra P Century F Dr. Annie		Hyderabad-500 081,		e Industries Ltd, , Block-3, e Hub, Madhapur, ad-500 081,	Telangana	Nalg	jonda
			e Besant Road,	ChhattisgarhRaipurMadhya PradeshSatnaMaharashtraChandr				
	21	Sanghi Ir P.O. Sar	- 400025, Maharashtra. ndustries Ltd, nghipuram, Abdasa Kachchh, 370511.	Gujarat	Kachchh			
SINGAREN (2X6	II TPP		FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-1 LIMESTONE SOURC		PAGE 6 OF		

			DETAILED PROJECT REPORT FOR FGD SYSTEM		एनरीपीर्स NTPC
CLAUSE N	0.		DESCRIPTION		
	1				50 -
		305, L	Cement Ltd, axmi Niwas,	Andhra Pradesh	Kurnool
	Hydera		nents, Ameerpeth, abad-500016, a Pradesh.	Madhya Pradesh	Satna
		Penna Ltd, Pl	Cement Industries ot No705,	Andhra Pradesh	Anantapur
	23	Banjar	No03, a Hills, Hyderabad-500034, a Pradesh.		
	24	OCL II Rajgar	ndia Ltd,	Odisha	Sundergarh

		DETAILED PROJECT		एनरीपीसी NTPC
CLAUSE NO.		DESCRIPTION		
	1.10		- 7 •	
		<u>CHAPTER -1</u> LIST OF PROBABLE		
1.00.00	Following	are the list of probable vendor	for installation of FGD	
	1.	M/s Doosan Heavy Indus	tries , South Korea	
	2.	M/s Doosan Lentjes, Gm	bh, Germany	
	3.	M/s Mitsubishi Heavy Inc	lustries, Japan	
	4.	M/s KC Cottrell, Korea,		
	5.	Chiyoda, Japan		
	6.	GE, Italy		
	7.	GE, USA		
	8.	Andritz, Austria		
	9.	SEC-IHI Power Generation	on Environment Protecti	on
		Engineering Co., Ltd., Cl	nina	
	10.	Babcox & Wilcox, USA		
	11.	Kawasaki, Japan		
	12.	IHL, Japan		12
	13.	M/s Doosan Power Syste	ems India Pvt. Ltd.	
	14.	M/s MHPS India Pvt. Ltd.		
	15.	M/s BHEL		
	16.	BGR Energy system Lim	ited	
	17.	Tata Projects Limited		
	18.	ISGEC Heavy Engineerin	ng Limited	
	19.	Thermax Limited		
	20.	Indure		
	21.	Punj Illyod		
	22.	McNally Bharat Engineer		
	23.	Essar Project (India) Ltd		
	24.	Alstom India Ltd		e
	25.	KC Cottrell India Private	Limited	
	26.			
	27.		ure .	
	28.	M/s L&T		
	PP STAGE-I	FLUE GAS	CHAPTER NO-12	PAGE 1 OF


		FRODUDTION					
CLAUSE		ESCRIPTION					
2.00.00		wer Consumption:					
	The Auxiliary	Power Consumption	shall be approximat	ely 14-18 MW, wh	ich wi		
	be 1.2-1.5 %.						
.00.00	Landed price	e of limestone:					
	The approxin	nate landed price of	limestone will be @) Rs 1200/MT to	@ R		
	2000/MT (exc	luding taxes) includin	g transportation Cost	L . L			
	1						
.00.00	Phasing of E	vnenditure					
.00.00	Thasing of L	xpenditure.					
	Estimated wo	rk cost including GST	58054	1.17			
	6	ontigency@3%	1741.	63			
			IDC Including FC 4736.95				
		C Including FC					
			4736. 64532				
		C Including FC			7		
	ID Fin. Year	C Including FC Total Quarter	64532 (%) Expenditure	.75 Value in Lakhs			
	ID(C Including FC Total Quarter	64532 (%) Expenditure 10%	Value in Lakhs 6453.28			
	ID Fin. Year	C Including FC Total Quarter	64532 (%) Expenditure 10% 10%	75 Value in Lakhs 6453.28 6453.28			
	ID Fin. Year	C Including FC Total Quarter	64532 (%) Expenditure 10%	Value in Lakhs 6453.28			
	ID Fin. Year	C Including FC Total Quarter I st quarter II nd quarter	64532 (%) Expenditure 10% 10%	75 Value in Lakhs 6453.28 6453.28			
	ID Fin. Year	C Including FC Total Quarter I st quarter II nd quarter III rd quarter	64532 (%) Expenditure 10% 10% 15%	75 Value in Lakhs 6453.28 6453.28 9679.91			
	ID Fin. Year 2019-20	C Including FC Total Quarter I st quarter II nd quarter III rd quarter IV th quarter	64532 (%) Expenditure 10% 10% 15% 15%	75 Value in Lakhs 6453.28 6453.28 9679.91 9679.91			
	ID Fin. Year 2019-20	C Including FC Total Quarter I st quarter II nd quarter III rd quarter IV th quarter I st quarter II nd quarter II nd quarter III nd quarter III nd quarter	64532 (%) Expenditure 10% 10% 15% 15% 10%	75 Value in Lakhs 6453.28 6453.28 9679.91 9679.91 6453.28 6453.28 6453.28			
	ID Fin. Year 2019-20 2020-21	C Including FC Total Quarter I st quarter II nd quarter III rd quarter IV th quarter I st quarter II nd quarter III nd quarter III nd quarter III rd quarter IV th quarter	64532 (%) Expenditure 10% 10% 15% 15% 10% 10% 10% 10%	75 Value in Lakhs 6453.28 6453.28 9679.91 9679.91 6453.28 6453.28 6453.28 6453.28 6453.28			
	ID Fin. Year 2019-20	C Including FC Total Quarter I st quarter II nd quarter III rd quarter IV th quarter II st quarter II nd quarter III nd quarter III nd quarter III rd quarter IV th quarter IV th quarter IV th quarter IV th quarter	64532 (%) Expenditure 10% 10% 15% 15% 10% 10% 10% 10% 10% 10% 10%	75 Value in Lakhs 6453.28 6453.28 9679.91 9679.91 6453.28 6453.28 6453.28			
	ID Fin. Year 2019-20 2020-21	C Including FC Total Quarter I st quarter II nd quarter III rd quarter IV th quarter I st quarter II nd quarter III nd quarter III nd quarter III rd quarter IV th quarter	64532 (%) Expenditure 10% 10% 15% 15% 10% 10% 10% 10%	75 Value in Lakhs 6453.28 6453.28 9679.91 9679.91 6453.28 6453.28 6453.28 6453.28 6453.28			

and a subset for

A CONTRACT	SCCL		DETAILED PROJECT REPORT FOR FGD			GD एनरीपीस NTPC		
CLAUSE	NO.	DESC	DESCRIPTION					
5.00.00			npact on tarif as been calcu		n basis of	following	9	
	1.	Generation	(both units) (m	nu)@ 85	% PLF		8935.20	mu
	2.		eration assum				8332.07	mu
	3.		including cont			the second se	59795.80	Lakhs
	4.		ng Financial cl			and the local division in which the local division in the local di	4736.95	Lakhs
	5.		ct cost includ				64532.75	Lakhs
	6.	the second se	prrowing (70%)	· · · · ·		70*	%
	7.	Equity		L	and the property of the same		30*	%
	8.	Interest rate					9.46*	%
	9.	Return on e	rn on equity (Post Tax)				15.50*	%
	10.	Lime stone of					1500	Rs/To
	11.		consumption@	085% PL	F for both	both units 24		T/hr
	12.	Discount rat	And the other distances of the local distance			the second se	9.86*	%
	13.	Loan repayn	Call of the second s				12*	years
	14.	Depreciation	and the same diversity of the local diversity				5.15*	%
	15.		6 of project co	ost)		and the second se	2 12*	%
	16.		hed by SCCL				12	%
							a/unit	
	V	ariable char	ges (first yea	r)	4.00	Pais	a/unit	
	Note i. Tl ii. 12	he remaining	plant life is co preciation peri	onsidered od is co	d for 25 ye nsidered fo	ears after f or FGD sy	-GD installa stem.	ation.
		Stage	Unit	Cap	acity	Date o	f commissio	oning
		l	1	600	MŴ	25.09.3		
		II 600 MW 02.12.2016						
SINGAREN (2X6	I TPP STA 00 MW)	GE-I DESUL	FLUE GAS	YSTEM		APTER NO-1		PAGE 3 OF

(124

SECL			DETAILED PROJECT REI SYSTEM	एनरीपीर्स NTPC	
CLAUSE NO.		D	ESCRIPTION		1
.00.00	The E	Estimated	ATE FOR BURNER MODIFIN d cost for installation of low 9 (2 X 600 MW) will be approxim	NOx burner, providir	ng over fire air
		S.No.	Description	Amount in Lak	(hs
	1.1	1.	Works cost including GST	2042.58	
		2.	Contingency	61.28	
		3.	IDC Including FC	115.71	
			Total	2219.57	

	Activity/Description of Milestones	mont	hs from IOA
		Start	Finish
	Engineering Completion		
1.	Engineering for start of civil work and BOI order finalization,	00	02
2.	Finalisation of engineering related to FGD inlet duct connection with ID-Chimney duct		04
2.	Complete engineering	-	08
_	Manufacturing & Supply		
3.	BOI Ordering		06
4.	Manufacturing & Supply of Equipments	-	18
5.	Manufacturing & Supply of gate, support structure, actuators etc. required for FGD inlet duct connection with ID-Chimney duct.	-	10
6	Civil and Structural Works of FGD		0.1
6. 7.	Initial mobilization	-	01
1.	Civil & Structural Works: Dismantling of existing structure (if applicable), Pilling, Civil & structural works for FGD system, Chimney, Limestone Handling System, Common Lime stone milling system, Absorber System, Gypsum Dewatering System Gypsum Handling System, Auxiliary Absorbent Tank, Process Water storage & Pumping System, Waste Water treatment system and associated cable trestles for air & water lines, slurry lines, steam line & waste water lines etc as per technical specification.	02	19
	Equipment Erection	00	0.1
8.	Equipment erection for FGD system, Limestone Grinding System, Absorber System, Gypsum Dewatering System, Auxiliary Absorbent Tank, Process Water storage & Pumping System, Waste Water treatment system etc. as per technical specification.	08	21
9.	Electrical and C&I: For FGD system, Limestone Handling System, Common Lime stone milling	-	24

एनदीपीसी NTPC

SINGARENI TPP STAGE-I	FLUE GAS	CHAPTER NO-14	PAGE 1 OF 3
(2X600 MW)	DESULPHURISATION SYSTEM	IMPLEMENTATION SCHEDULE	

SC		DETAILED PROJECT RE SYSTEN		एन N	ीपीर्स TPC
LAUSE N	10.	DESCRIPTION			
		8			
	1 3 1	system, Absorber System, G System, Gypsum Handling Absorbent Tank etc.	Gypsum Dewatering System, Auxiliary		
	E	Commissioning of FGD			
		Commissioning		• -	25
	F	Completion of facilities			27
	acti mo	e schedule given above is for vities specific to subsequent Un nths, except for engineering acti n Unit #1	its shall be phased at	an inter	val of 3
		oply of mandatory spares needs n equipment	to be ensured along	with res	spective

3	Com
1	7

SEEL		DETAILED PROJECT REPORT FOR FGD SYSTEM		एनदीपीर्स NTPC
LAUSE NO	<u> </u>	DESCRIPTION		
	TEN	ITATIVE WORK SCHEDULE FOR L PACKA		ODIFICATION
	SI. No.	Activity/ Description of Milestones	Duration in months	from NOA
			Start	Finish
	1.	Design, Engineering, Manufacturing	00	01
	2.	Procurement of Raw materials & Manufacturing	01	05
	3.	Supply & Receipt of material at Site	05	06
	4	Dismantling	07	08
		Erection	07	08
	6	Commissioning, Testing & Completion of facilities	08	09
	months	ove is for first unit. Completion of so with an interval of one month for co it shall be on availability of unit shut	nsecutive units. Comp	

SCEL		DETAILED PROJECT REP SYSTEM	ORT FOR FGD	एनरीपीसी NTPC	
		DESCRIPTION			
1.00.00	The details	CHAPTER-15 OPERATION AND MAINTENAN and Maintenance Philosophy covered below are the general as	pects of scope and o	ther requirements	
	The brief elaborated approval. operation a (a) Ensurir reduction	ed out during operation and mainter O&M philosophy as indicated by the bidder in the O&M mar Items though not specifically me and maintenance of entire FGD plar og successful operation of FGD F on efficiency with optimum energing good quality of gypsum.	below. The details nual to be submitted entioned but neede nt to meet the intent o Plant in three shifts	shall be furthe d to OWNER fo d for continuous f specification,: for required SO2	
	Further engine (b) Carryin overha experts the pla	, maintenance of the entire FGD p ers, supervisors, operators and tech g out necessary Preventive maint uls, furnishing technical assistance to site from time to for ensuring int. Also carrying out maintenanc ul of the unit	enance and Breakdo from experts & arran smooth operation an	ck . wm maintenance nging visit of O&N d maintenance o	
	and M charge the ope running (d) The O	 (c) It has to ensure that FGD plant is operated and maintained as per "Operation and Maintenance instruction manuals" and in accordance with Engineer-in charge for coordination with operation/maintenance of main plant. Daily work of the operators involves logging the all the important parameters as required and running of the FGD plant in most efficient manner. (d) The O&M personnel shall record monthly energy output of each array and transformer and reports shall be prepared on performance of FGD plant. 			
 transformer and reports shall be prepared on performance (e) Submission of periodical reports on the operating conditional has to ensure that adequate measures are initiated in a actual or likely shortfall in performance (f) Monitoring, controlling, troubleshooting, maintaining of response to the prepared on performance of the periodical reports on the operating of the periodical reports on the operating conditional performance of the periodical reports on the operating of the periodical periodical reports on the operating of the periodical periodical reports on the operating of the periodical periodical				f the FGD plant. I to overcome any registers.	
	breakd	to maintain all spares and includir own/annual overhaul and consuma based on OEM experience.	ng critical spares in c ables required for atle	case of any majo east period of five	
	ENI TPP STAGE 2X600 MW)	-I FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-15 OPERATION AND MAINTENANCE PHILOSOPHY		

SCCL	DI	ETAILED PROJECT REP SYSTEM	ORT FOR FGD	एनरीपीसी NTPC
CLAUSE NO.	DE	SCRIPTION		
(i) (j) (k) (l)	leakage fro responsibilit The mainter system, abs nozzles of a inside absor agitators, no connected v Further, pre related to all The Owner rules. All interloc done. It shall ensu It has to tak Equipment I fans, Wet I pumps, Agi equipment o Operation	to be taken to prevent pollu m pipeline during operation y to ensure minimum wastage hance shall include all repair/re- corber tank, gypsum handling absorber and mist eliminator, in ber and chimney lining, main ozzles in flushing and filling I vater/slurry lines & bends of F eventive, routine and annual electrical and C&I works is all shall provide all amenities to ks/protections shall always b ure that all safety measures ar e Comprehensive Annual Mai Manufacturer (OEM) or OEM Ball Mills, Oxidation blowers tators, Slurry pumps Mist e leemed necessary. and maintenance of entire F0 that no power generation loss	of the FGD plant of water. eplacement of lime has system, cleaning/re- repair/replacement of tenance of all valves ines, repair/replacem FGD system & all oth overhauling/breakd so included. workmen as per ap e in place and no b re taken at the site to ntenance Contract (A authorized service pr , Vacuum filters, Si liminators, Motors e	t. It shall be the andling and milling pair/rectification of f all cladding/lining s, pumps, blowers, nent /fabrication of ner equipment etc. own maintenance oplicable laws and oppassing shall be avoid accidents AMC) from Original rovider for Booster lurry Recirculation etc and any other
Con req pos eng	 b) Review / Preparation and finalization of commissioning documents. c) Supervision of pre-commissioning and commissioning activity. d) Preparation of documents for maintenance management system. 			
SINGARENI TPF (2X600 M		FLUE GAS DESULPHURISATION SYSTEM	CHAPTER NO-1 OPERATION AN MAINTENANCE PHILOSOPHY	D PAGE 2 OF 3

(130)

		DETAILED PROJECT REPO SYSTEM	RT FOR FGD	एनरीपीसी NTPC
CLAUSE	NO. D	ESCRIPTION		
		ob training activity will be coordi Training in the areas of operation organized.		
2.01.00	Training of O	peration Engineers		
	a) Trainir	ng at manufacturers Works and oth	ner Utilities	
	work f impart	peration engineers will undergo for familiarization and for design/ ed training in the running units plogies have already been adopted	testing aspects. of other utilities	They will also be
2.02.00	Training of N	laintenance Engineers		
	Maintenance	engineers will undergo extensive	training at stations	s of other utilities.
	They will also	be imparted training at manufact	urers work for fam	iliarization and for
	design/testing	aspects.		
	n - 50			
				<i>.</i>
			CHAPTER NO-1	

(131

	à))	DETAILED PROJEC SYS	T REPORT	FOR FGD	एनरीपीसी NTPC
	IC.	DESCRIPTION			
		CH BILL OF QUN	APTER-16 ATITIES (TEN	TATIVE)	
SL.NO.	DESCRIPT	ION	QUANTITY	UNIT TECH	H. PARAMETRS
1.00.00	PRELIMINA	ARY & CIVIL WORKS			
1.01.00	Site Cleara	ince			
(i)	Site Clearar	nce & Site grading	75000	M²	
1.02.00	Concrete F	Road and Drains			э.,
(i)		e Cement Concrete Road	0.75	KM	
(ii)	(Inside Plan Rectangula	r Concrete Catch Drains	1.5	KM	
1.03.00	Structural Fabricatior	Steel (Supply, and Erection)			
	House, Pip	Galleries, TP's, Crusher be & Cable racks, Lime ed, Gypsum storage Shed	4500	МТ	
1.04.00	Tower, Chi tank, Crush other Mac foundations	n Foundations like Absorber imney, Absorbent storage ner House, Mills, Fans & chine Foundations, Silo , Conveyor Gallery, TPs, le racks, etc.	LOT		
1.05.00	area con dewatering Control roo	vil works rchitectural works in FGD mprising of Gypsum building, Ball Mill Building, m building, MCC building, ations, Storage sheds, etc.	LOT		
1.06.00	cladding o Borosilicate	win flue RCC chimney with of Titanium/C-276 alloy/ Glass Block on mild steel staircase and elevator hion Type).	1	No.	
	TPP STAGE-I 0 MW)	FLUE GAS DESULPHURISATION SYSTE	and the second se	HAPTER-16 DF QUANTITIES	PAGE 1 OF 1

		DETAILED PROJECT REP SYSTEM	PORT	FOR FGD	एनरीपीसी NTPC
LAUSE N	IQ.	DESCRIPTION			<u> </u>
				-	
2.00.00	MECHANIC	AL WORKS			
2.01.00	FGD SYST	EM			
2.01.01	Flue Gas S	ystem (2X600MW)			
1	Booster Far	n/FGD Inlet Gate	4	No.	2W/Unit. Motorised
2	Seal Air Fai	n for Inlet Gate	8	No.	(1W+1S)/Unit
3	Booster Far		4	No.	2W/Unit. Axial type, constant speed, variable pitch with drive
4	Lub. system	n for Booster Fan	4	No.	motor 1W/Booster Fan
5	Booster Far	n Outlet Gate	4	No.	2W/Unit. Motorised
6	Seal Air Far	n for Outlet Gate	8	No.	(1W+1S)/Unit
7	Bypass Dar	nper	2	No.	1 damper each for Unit 1&2
8	Seal Air Fai	n for Bypass Damper	4	No.	(1W+1S)/Bypass damper
9	Flue Gas D	uct System	Lot		From chimney inlet duct to FGD absorber system further to wet chimney
10	Duct Expan	sion Joints	Lot		
11	Insulation 8	Cladding for ducts	Lot		
2.02.00	Absorber S	System			
1	Absorber bottom	Tower with integrated tank at	2	No.	1W/Unit. Absorber tower with integrated tank at bottom with spray banks and three stage mist
	TPP STAGE-I 0 MW)	FLUE GAS DESULPHURISATION SYSTEM		IAPTER-16 F QUANTITIES	PAGE 2 OF 1

(133)



		DETAILED PROJECT REP SYSTEM	ORT F	OR FGD	एनरीपीसी NTPC
CLAUSE N	10.	DESCRIPTION			
	10.5				
					eliminator
2	Slurry Reci	rculation Pumps	6	No.	3X50% (for single spray level)/Absorber
			4/per spray level	No.	2X100% (for multi leve spray)/absorber
3	Oxidation E	lowers	4	No.	(1W+1S)/Unit
4	Internal pip	ing for oxidation air injection	Lot		
5	Absorber A	gitators	10	No.	(4W+1S)/Unit
6	Emergency	Water tank	2	No.	1W/Absorber
7	Gypsum Bl	eed Pumps	4	No.	(1W+1S)/Unit
8	Mist Elimina	ator Wash Pumps	4	No.	(1W+1S)/Unit
9	Absorber A	rea Sump	2	No	1W/Absorber Area
10	Absorber A	rea Sump Pump	4	No	(1W+1S)/Unit
11	Auxiliary At	osorbent Tank	1	No	1W/Station. Tank
					complete with all
					agitators, piping,
					valves, fittings etc.
12	Auxiliary At	osorbent Slurry Pump	2	No.	1W/Unit
13	Piping Instr	umentation, Valves etc.	Lot		
14	Flue Gas D		Lot		
15 16	Duct Expan	Cladding for ducts	Lot Lot		
2.03.00	Limestone	Slurry System			
1	Mill Bunker		2	No.	(1W+1S)/Station
2	Silo/Bunker	Outlet Gate	2	No.	1W/Silo/Bunker
3	Wet Ball N system	lill with drive system & lubricating	2	No.	(1W+1S)/Station
4	Weighing F	eeder	2	No.	1W/Mill
5	Mill Slurry (Separator) Tank	2	No.	1W/Mill
	TPP STAGE-I 00 MW)	FLUE GAS DESULPHURISATION SYSTEM		APTER-16 QUANTITIE	PAGE 3 OF 1

		DETAILED PROJECT REPORT FOR FGD SYSTEM				
CLAUSE N	10.	DESCRIPTION				
6	Mill Slurry	Tank Agitators	2	No.	1W/Mill	
7	Mill Circuit	Pump	4	No.	(1W+1S)/Mill	
8	Mill Hydrod	yclone	2	No.	1W/Mill	
9	Limestone	Slurry Tank	2	No.	2/Station	
10	Limestone	Slurry Pumps	6	No.	(2W+1S)/Tank	
11	Limestone	Slurry Tank Agitators	2	No.	1W/Tank	
12	Reagent (li	mestone) Preparation Area Sump	1	No	for both units	
13	Reagent P	reparation Area Sump Pump	2	No.	(1W+1S)/ for both	
14		rumentation, valves etc. DEWATERING SYSTEM	LOT		units Pipes/chutes with valves from mil and hydrocyclone to common slurry storage tanks further to absorber system	
	Concert Concertainty of					
1		drocyclone Feed Tank	1	No.	1/Station	
2 3		drocyclone Feed Pump drocyclone	2	No. Set.	(1W+1S)/Tank (1W+1S)/Station	
4	Vacuum Be		2	No.	(IWIIIS)/Station	
5	Vacuum Pu		2	No.		
6	Constant and Constant	eceiver Tank	2	No.	(1W+1S)/Station	
7	Cake wash	water storage Tank	2	No.	(1W+1S)/Station	
8	Belt & Clot	h Wash Pump	4	No.	(1W+1S)/Vacuum belt filters	
9	Cake Wash	n Pump	4	No.	For each vacuum belt filters	
10	Filtrate Wa	ter Tank	1	No.	Common for both units	
11	Filtrate Wa	ter Pumps	2	No.	Common for both	
			2 - ¹⁴			
	TPP STAGE-I	FLUE GAS DESULPHURISATION SYSTEM		APTER-16 F QUANTITIES	PAGE 4 OF 1	

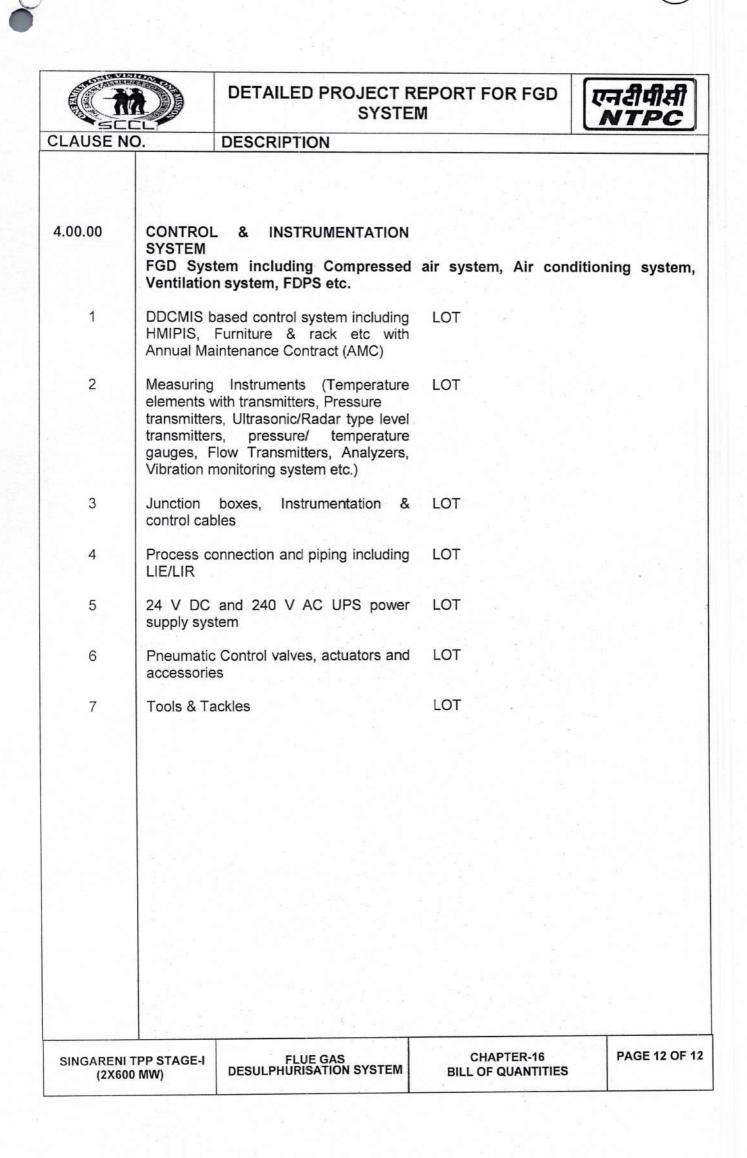
	A))	DETAILED PROJECT F SYSTE		FOR FG	^D एनरीपीसी NTPC
CLAUSE N	10.	DESCRIPTION			
					units
12	Secondary	Hydro cyclone Feed Tank	1	No.	1/Station
13		Hydro cyclone Feed Pump	2	No.	(1W+1S)/Tank
14		Hydro cyclone	2	Set	(1W+1S)/Station
15		Area Sump	1	No.	for both units
15		Area Sump Pump	2	No.	(1W+1S)/ Station
16		rumentation, valves etc.		Lot	(100) 0121011
2.05.00	Waste Wat	er Treatment System			
1	Neutralizati	on Tank	1	No	1/Station
2	Waste Wate	er Tank	1	No	1/Station
3	Lime Feedin	ng & Storage System	2	Set	(1W+1S)/Station
4	Waste Wate	er Pumps	2	Nos.	(1W+1S)/Station
5	Piping, instr	rumentation, valves etc.	Lot		Piping to discharge
					waste water at
					required pressure
2.06.00	Process W	ater System			
1	Process Wa	ater Tank	2	No	2/Station
2	Process Wa	ater Pump	4	No	(1W+1S)/Tank
3	Booster Pu	mp (if required)	2	No	(1W+1S)/Station
2.07.00 1	Elevators Passenger	cum Goods elevator	2	Nos.	With minimum capacity of 1000 kgs for absorber & milling
2.08.00	LIMESTO	NE/GYSUM HANDLING PLAN	т		area
2.08.01	Conveyor	s & Accessories			
1	Belting		1000		Belt Rating : 800mm wide synthetic, cover thick 5/2 mm, av. Belt strength 50/4 FR Grade
2	Carrying I	dlers(Including SAC)	350		35 deg. Trough., 3 roll
	TPP STAGE-I 00 MW)	FLUE GAS DESULPHURISATION SYSTEM		HAPTER-16 OF QUANTIT	PAGE 5 OF

	A))	DETAILED PROJECT SYST		T FOR	GD	एनरीपीसी NTPC
CLAUSE N	0.	DESCRIPTION				
19	In Line Ma	gnetic Separator	2	Nos	Inline (for	0 TPH type, 1000 gauss 150 TPH
20	Suspende	d Magnets	2	Nos		gauss (for 150 conveyor)
21	Metal dete	ctor	2	Nos	(for	150 TPI
22	Lime Sam	pler Unit	1	No	conve For Ra)250m	aw Lime (-
23	Travelling	Trippers	04	Nos	For	150 TPH
24	Monorails	& hoists	Lot	Nos	Electri hoists	Capacity) ical operated , Manual hoists hain Pulley Blocl
25	Lime crush unit	ner with complete drive	2	Nos		PH, Hammer Mi
26	Vulcanisin	g Machine	1	Nos	-	er
27	Passenger	cum goods Elevator	1	Nos	1 T	(Conventiona
28	Dust Extra	ction system	Lot	Nos	type)	
29	Ventilation	system and Package AC	Lot	Nos	Typica	al
30	Service wa Water Sys	ater system, Potable tem	Lot	Nos	Typica	al
31	Mandatory	spares	Lot		Typica	al
32	Special too	ols & tackles	Lot		Typica	al
33	Undergrou	ind hopper with shed	04	Nos.	25 MT	Each
34	Belt Feede	er	08	Nos	100 T	PH
35	Lime stora	ge Silo	3	Nos	1800	Т
36	Fluidising	System	200	Nos	For Li	me Storage silo
37	Bucket ele	vator	04	Nos	100 T	
2.09.00	EQUIPME	NT COOLING WATE	R			
1	and a second company.	Cooling Water pumps	4	Nos.		Centri; Each of 0M3/hr & 55 MWC -2S)
2	DM coolin	g water pumps FGD	3	Nos.	Horiz, 50 M3	Centri; Each of 8/hr & 45MWC rating:7.5 KW
	TPP STAGE-I 0 MW)	FLUE GAS DESULPHURISATION SYSTEM	BIL	CHAPTER		PAGE 7 OF

		DETAILED PROJECT R SYSTE		T FOR F	GD	एनरीपीसी NTPC	
LAUSE N	0.	DESCRIPTION					
			206 - S		а	-	
3	Plate type	heat exchangers (FGD)	Lot			% (With	
4	Chemical s system (F0	storage equipment and dosing GD)	Lot		Titanium plates) One for FGD Syster		
5	GRP Pipes	8	1000	m	450 NE	3	
2.10.00	FIRE DE SYSTEM	TECTION & PROTECTION					
1	Hydrant & indoor & o boxes, cou	spray system mains piping, outdoor hydrants, hoses, hose oplings etc.	Lot				
2		y system for various s (Transformers, etc.)	Lot				
3	MVW Spra	y system for cable Galleries	Lot				
4	alarm syst detectors,	addressable fire detection and tem comprising multisensory Fire alarm panels, PLC mote I/O panels, etc.	Lot				
5	Conveyors interface	e for lime and Gypsum & cable galleries along with unit for each zone & all arrangement	Lot				
6		cabling for the complete fire alarm & protection system	Lot				
7	Fire Exting type)	guishers (Portable & mobile	Lot				
2.11.00	COMPRES	SED AIR SYSTEM					
1 .		essors with control panels, ation & all accessories like ves,	2	Nos.	Screw type oil free compressors each of capacity 15 NM3/min (minimum) & discharg Pressure of 8.5		
2	accessorie	panels, instrumentation, all s like piping, valves & dew point meters	2	Set		ty15 NM3/min	
3	Air receive	rs	2	Nos.		al Capacity: 2	
	TPP STAGE-I	FLUE GAS DESULPHURISATION SYSTEM		CHAPTER-	16	PAGE 8 OF 1	

(139

		DETAILED PROJECT R SYSTE		RT FOR I	GD	ज़रीपीसी NTPC
	0.	DESCRIPTION		-		
	61.0				m3	
2.12.00	AIR CON	DITIONING AND VENTILATION	SYST	EM		
2.12.01	Air-Cond Control F	itioning System for FGD Room				
1	along with	Air cooled condensing unit (D-X type) along with associated refrigerant piping, valves, instruments, etc.			20 TR	
2	Built-up c (AHUs)	louble skin air handling units	2	Nos.	15000 C	MH
3	Pan Hu Accessori	-	Lot			
4	Electric Controls	strip heater together with	Lot			
5	Cassette	(Split)	8	Nos.	4.0 TR	
6	Hi-Wall (S	split)	8	Nos.	3.0 TR	
2.12.02	VENTILA	TION SYSTEM				
1	Ventilation room Build	n System for FGD Control ding				
а	Double sk air filtratio	tin modular type central unitary n units	1	Set	35000 C	MH
b	DIDW cer	ntrifugal fans with drive motor	1	No.	35000 C at 40 MM	MH Capacity
с	Circulating	g water pumps with drive motor	1	No.	승규가 같다. 동안 동안 영상 영상 같이 많다.	nr & 30 MWC
2.12.03	grills, c	es such as piping. ducting, lampers, valves diffusers, instrumentation, panels, etc	Lot			
2.12.04	comprisin	n System for Misc. areas g of supply & exhaust air fans, ctor fans, gravity dampers, etc.	Lot			
SINGARENI 1 (2X600		FLUE GAS DESULPHURISATION SYSTEM	PII	CHAPTER		PAGE 9 OF


40)

141

ET ST		DETAILED PROJECT RE SYSTEM				ज्ञी NT		
CLAUSE N	10.	DESCRIPTION						-
3.00.00	ELECTRIC	CAL				9		
3.01.00	TRANSFO							
(i)	FGD HT T	ransformers	2	Nos.	11/3.45k ONAN, C		Mν	A
(ii)	FGD LT T	ransformers	4	Nos	11/0.433kV, 200 KVA, ONAN, OCTC			
(iii)	FGD LT T	ransformers	3	Nos	11/0.433kV, 160 KVA, ONAN , OCTC			0
3.02.00	HT SWITC	HGEARS				, UU	10	
(i)	FGD Swite	bhgear – 11KV	20	Panels	11KV, 1 rating.	250A B	us b	ba
	1.1				Incomers	-1250A		
					Outgoing			
	1 - S.				40kA for			
(ii)	FGD Swite	hgear – 3.3 KV	15	Panels	3.3 KV, 2)a
					rating.	0500		
					Incomers			
					Outgoing 40kA for			
(iii)	Retrofitting	of existing 11 kV feeders of	02	CBs				
(111)		Station boards.	02	OD3	11KV, 1250A, 40k for 1 second (BHE			
					make)	coona		
(iv)		on of Transformer feeders to	04	Panels	manoy			
0 00 00		lers in Unit Boards						
3.03.00	LT SWITC	HGEARS						
(i)	FGD LT S	ervice Switchgear- Unitised	2	Set	3200A,	50 KA	for	
(1)		3			sec.			
(ii)	FGD Com	mon services SWGR	1	Set	2500A,	50 KA	for	
					sec.			
(iii)	Emergenc	y FGD MCC 1600 A	1	Set	1600A, sec.	50 KA	for	
(iv)	415V AC [Distribution Fuse Board	8	Set				
(v)	220V DC I	Distribution Board (DCDB)	1	Set				
(vi)		Fuse Board (DCFB)	6	Set				
(vii)	and the second s	Main Lighting Distribution	3	Set	2X100K\	/A, 400/	4	
()	Board (ML		2	Set	2X50KV/	A 250A		
(viii)	415V A	AC Emergency Lighting n Board (ELDB),	2	001	2/(001(0)	, 2001		
(iv)	the second s	Push button Stations	130	Nos.	Outdoor	dutv		
(ix)	Local Mote		20	Nos.	Metalcla		or du	t
(x) (xi)	Junction E		80	Nos.	GI			2
(^)								
								_
SINGARENI	TPP STAGE-I	FLUE GAS DESULPHURISATION SYSTEM	(CHAPTER-1	6	PAGE	10 OF	F

. .

		DETAILED PROJECT RE SYSTEM		T FOR I	GD	एनरी NT	
CLAUSE NO	<u>).</u>	DESCRIPTION					
3.04.00	BUSDUC	г				KS	
(i)	Metal Er	nclosed Segregated Phase	80	Mtrs.	3.3 KV	, 2500 A	
(1)	Busduct.						
(ii)	Metal Er Phase Bus		40	Mtrs.	415 V,	3200 A	
(iii)	Metal En		40	Mtrs.	415 V	2500 A	
	Phase Bus	5 5	10	Mid O.	410 0,	2000 A	
3.05.00	BATTERY	& BATTERY CHARGER			7		
(i)		AH Ni-Cd/	2	Nos.		90 AH N	i-Cd/
(ii)		ead Acid Batteries	0	Nee	150 AH		
(11)	2200,407	A Float cum boost Chargers	2	Nos.	220V ,	40A	
3.06.00	HT CABL	ES	ta				
3.06.01	11 KV ca						
(i)	3C-150 sq	. mm.	3	Km	Armou XLPE i	red, insulated	FRLS
(ii)	1C-300 sq	. mm.	12	Km	Armou	1. S.	FRLS
1000					XLPE i	insulated	
(iii)	1C-630 sq	. mm.	12	Km	Armou	red, insulated	FRLS
3.06.02	3.3 KV ca	able,				noulated	
(i)	3C-150 sq		4	Km	Armou	red,	FRLS
						insulated	
(ii)	1C-185 sq	. mm.	6	Km	Armou XLPE i	red, insulated	FRLS
3.07.00	LT CABLE	ES					
(i)		Power cables	100	Km		red, FRLS	
(ii)	1.1KV LT	Control cables	30	Km	Armou	red, FRLS	S,
3.08.00	CABLE T	RAYS & SUPPORTS					
(i)	Cable Tra		18	Km	Ladder	r/Perforat	ed Gl
(ii)	Cable Tra	y Supports &	1	Lot			
	Accessorie	es					
3.09.00	MISCELL	ANEOUS ELECTRICAL					
3.09.00 (i)	DG Set,		1	No.	630 K\	/A, 415 V	'
(ii)	Cabling		1	Lot			
(iii)	and the second sec	Lightning Protection	1	Lot			
(iv)	Illuminatio	n System	1	Lot			
SINGARENI T		FLUE GAS		CHAPTER	16	PAGE	11 OF

	DETAILED PROJECT F	एनरीपी NTP		
AUSE NO.	DESCRIPTION			
	CHAPTER-1 RECOMMENDAT			
Recon	nmendations for control of S	ulphur Dioxide (SO ₂	control)	
accommo efficacy o disposal o Based or prepared	ngs out the performance expectation odation in the existing plant, SO ₂ re of the process (above 95%), sour of the by-products (gypsum) of the of the Detail Project Report, the so for the FGD system.	duction process which is process of the reagent (lime desulphurization process suitable technical specific	undertaken a stone) in Indi s in various u cation needs	
	nendations for control of Ox			
	e scope of work, Combustion Mod y for Singareni TPP (2X600 MVV).	Incation-Low NOX burner	is the most s	
new/mod four corr Power cy boiler do expenditu	rocess following modification are ified Re-designed Wind box inclu- ners, New Re-designed Tilting rlinders, Modification in coal pipi wn time as per implementation s are with no requirement of operation ving high reliability.	iding new coal, oil and ai Tangential Burner Asse ng, coupling & its suppo schedule. This process h	ir nozzle tips embly, Burno orts which re as one time	

APPENDIX - C

[of Capital Investment plan]

Bharat Heavy Electricals Limited

(A Government of India Undertaking) Power Sector - Spares & Services Business Group (R & M Division) II Floor, KRIBHCO BHAWAN, A 8-10, Sector 1, NOIDA - 201301 Ph: 0120-2440836; Fax: 0120- 2532158; E-mail: gurpreet@bhel.in

> Ref: PS/SSBG/R&M/F-1564 Date: 31st January 2019

Shri. JN Singh Chief (O&M) Singareni Thermal Power Plant, Pegadapalli, Jaipur, Telangana 504216

Sub: NOx Mitigation System for 2X600 MW Singareni TPS Unit 1 & 2 of M/s SCCL

Ref: 1. SCCL letter dtd 08.08.2018.

- BHEL Budgetary offer dtd 06.09.2018.
- 3. BHEL presentation reg. DE-NOx at SCCL site dtd 09.01.2019.

Dear Sir,

We thank you very much for the hospitality offered by M/s SCCL to team BHEL during their visit to Singareni site on 09.01.2019.

For designing the NOx mitigation system, BHEL has considered the baseline value of NOx emission as 480 mg/Nm3 for both the units (as furnished by SCCL vide their letter cited at SI#1 under reference). As explained during the presentation made at site, BHEL will be offering Combustion modification package (In-furnace) including two level SOFA arrangement for abatement of the NOx emissions. The above system will be able to reduce the NOx emissions by 40%. (i.e. NOx level could be brought down to the range of 280-290 mg/Nm3).

Budgetary Price for the NOx mitigation system (as furnished vide BHEL letter dtd 06.09.2018) for both the units is INR 37.88 Crores (Inclusive of Freight, Insurance and GST). As discussed during the meeting at site, a minimum of 45 Days shutdown would be required to implement the said package. Other Terms & conditions may be agreed mutually on a convenient date, time and venue.

We look forward for your esteemed order on us as soon as possible.

Thanking you and assuring of our best services always,

Yours faithfully, for Bharat Heavy Electricals Limited

Gurpreet Singh Senior Engineer BHEL- SSBG(R&M)

Regd. Office: BHEL House, Siri fort, New Delhi - 110049

Scanned by CamScanner

APPENIDIX - 'D' Eof Capital Investment planj

BHARAT HEAVY ELECTRICALS LIMITED

(A Govt. of India Undertaking)

Power Sector: Spares & Services Business Group Ek Tara Building, 39-Sarojini Devi Road, Secunderabad-500003 Ph: 040-27718968/27704643/27701259, Fax: 040-27710280 E-mail: rksingh@bhel.in; shaukat@bhel.in

Date: 24.10.2018.

Ref: PS: SSBG: SEC: STP: 030: HWT: Bud: GVK:

Shri M V VENUGOPAL RAO, DGM - OPERATIONS (MECHANICAL), 2x600MW, Singareni Thermal Power Project, The Singareni Collieries Company Limited, Jaipur (V&M), Adilabad (Dt), Telangana-504216.

PHONE: 08333991925

Sir,

Sub: Budgetary offer for Major Modules for SCCL-reg. Ref: E-mail message dated 12.10.2018.

With ref to the above, we are pleased to submit our budgetary offer as per enclosed annexure-A. Other terms and conditions are as given below.

- 1) Quoted prices are FOR Ex-works-BHEL Haridwar.
- 2) Offer shall be valid up to 31.12.2018.
- 3) All the terms & conditions of the contract with respect to Taxes & Duties are subject to the new taxation laws introduced from time to time (e.g., GST). The terms & conditions will be modified in accordance with the provisions of new laws (e.g., GST). Present rates are IGST-18%.
- 4) The contractual delivery period of these spares shall be 24 months from the date of receipt of technically clear & commercially firm purchase order.
- 5) PO should be in line with our offer. Deviation in terms & condition from our offer is not acceptable.

Kindly arrange to process our offer for placement of order at the earliest.

Thanking you.

Yours faithfully,

(Shaukat Ali) Manager, SSBG

ANNEXURE-A

Ref: PS: SSBG: SEC: STP: 030: HWT: Bud: GVK:

Date: 24.10.2018.

11

SINO			Unit Ex-works Price in Rs
1	1 HP MODULE		465045000
2	2 IP MODULE		538125000
3	LP TURBINE ROTOR-1	1 No	\$ 252000000
4 LP TURBINE ROTOR-2		1 No	252000000
5	GENERATOR STATOR	1 No	63000000
6 GENERATOR ROTOR		1 No	383250000
7	EXCITER ASSEMBLY*	1 No	220500000
	TOTAL EX-WORKS VALUE IN RS		274,09,20,000

Amount in words: Rupees Two Hundred Seventy Four Crores Nine Lakhs Twenty Thousand Only.

Note: For item no: 7, EXCITER ASSEMBLY

- 1. Price of exciter cooler is not considered.
- 2. Price of bed plate access and rack assembly, bed plate accessories, fuse monitoring, Dry air blower installation and assembly of covers are not considered.

QUALITY PLAN:

- All material supplied by BHEL shall be inspected as per BHEL standard procedure and practices. BHEL shall submit Certificate of Compliance (COC) only for these spares.
- 2) Kindly note that BHEL may procure raw material in semi-finished/finished condition from their approved and established vendors.
- 3) We will ensure the warranty and interchangeability of the spares, but no physical certificate (TC/GC) shall be furnished.
- 4) Budgetary offers are submitted to facilitate you for estimation and are provisional only. Prices may vary from time to time. Please don't compare these budgetary offer prices with your firm offers.
- 5) Kindly release firm enquiry/Purchase order to enable us to plan our Manufacturing activity to suit your delivery requirement.

SSBG HQ: Kribhco Bhawan, A8-10, Sector-1, NOIDA-201301. Fax : 2532156 (ED Sectt), 2474069 (Planning) & 2532158 (Gen) Regd. & Corporate Office: BHEL House, Siri Fort, New Delhi – 110 049. Phone No. 011 – 66337000 Fax: 011 – 26493021

APPENDIX-E

46

FILE

ม มาราชาวาร เ**น่าที่มาสส์**คา 1760 การ มาราช 2017 (2010 ค.ศ. 1840) รัฐ เป็น ค.ศ. 2010 SECRETAD มาราชสุภท (26 MDIA)

12721709

4:00

E

.......

36

I.W. No

Data

VERSING CERALWARD Class (H-A - 47, TREW DELF - - - 1)

New Delhi, Dated: 27.09.2018

No 2018/RE/161/22

Grajersayen Sirgr

Dear Shri Singh,

Sub: Electrification of Coal sidings.

Cabinet has accorded sanction for electrification of balance un-electrified broad gauge routes of Indian Railway (13,675 toute kilometers/16,540 track kilometers) vide Cabinet Secretariat OM No. CCEA/26/2018 dated 13.09.2018. It is essential to electrify all sidings of Coal India for smooth train operation on electric traction. However, this may need special OHE arrangement for facilitating mechanized coal loading at wharf & coal hopper, where loading is done through JCE & Chute respectively.

May I therefore, request you to take immediate action for electrification of all coal sidings so as to achieve seamless operation of coal rakes on electric traction.

With Regards,

Dr. Inder Jit Singh Secretary Ministry of Coal Shastri Bhawan New Delhi – 11001

E. Pring with debas ESMI rector

Divector C

Yours Sincerely, (Ghanshyam Singh)

feil provens

No. 43012/40/2012-CPAM (VI)-Part(1) Government of India Ministry of Coal (CPAM Section)

Shastri Bhawan, New Delhi Date: 25-10.2018

10		05:11/2019
01	Chairman, Coal India Limited, Coal Bhavan, (W.B) E-mail: chairman.cil@coalindia.in	
02	CMD, Eastern Coalfields Limited, (W.B) E-mail: cmd.ecl.cil@coalindia.in	
03	CMD, Central Coalfields Limited, (Jharkhand) E-mail: cmd.ccl.cil@coalindia.in	
04	CMD, Northern Coalfields Limited, (M.P). E-mail: cmd.nel.cil@coalindia.in	
05	CMD, Bharat Coking Coal Limited, (Jharkhand) E-mail: cmd.bccl.cil@coalindia.in	
06	CMD, Mahanadi Coalfields Limited, (Odisha) E-mail: cmd.mcl.cil@coalindia.in	
07	CMD, Western Coalfields Limited, (Maharashtra) E-mail: cmd.wcl.cil@coalindia.in	
08	CMD, South Eastern Coalfields Limited,(Chhattisgarh) E-mail: cmd.secl.cil@coalindia.in	
09	CMD, NLCIL, (Tamil Nadu) E-mail:cmd@nlcindia.com.	
10	CMD, Singareni Collieries Company Limited, (Telangana) E-mail:cmd@scclmines.com, rosccl@rediffmail.com	

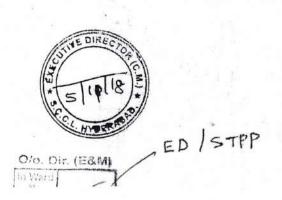
Subject: Electrification of Coal sidings - reg.

Sir,

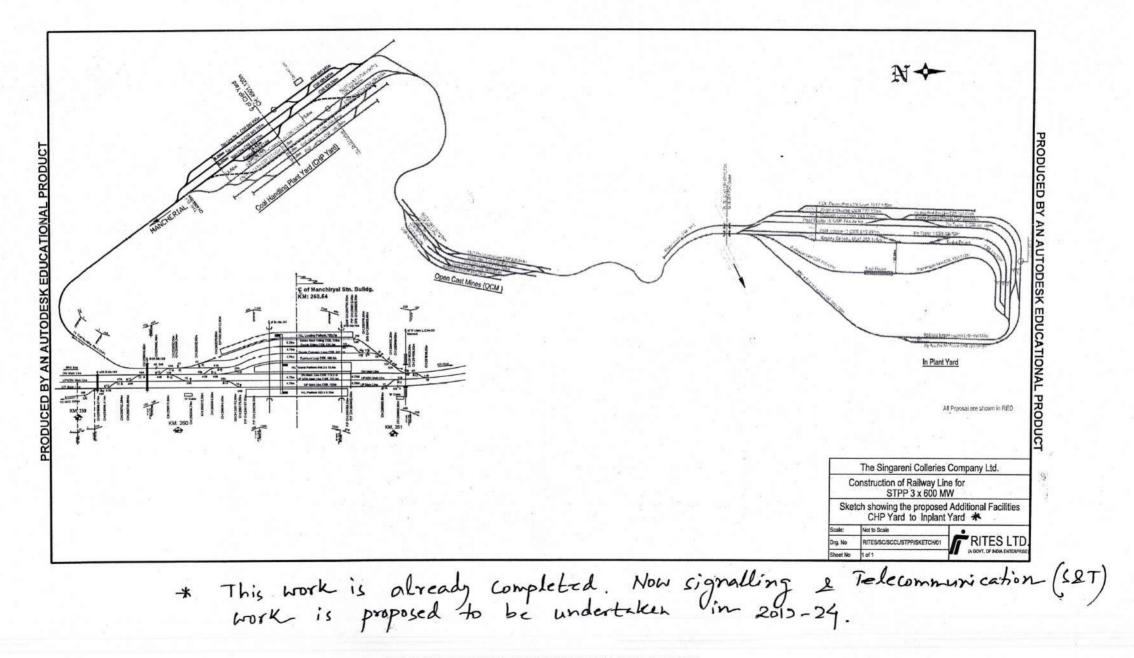
AL.

.....

I am directed to refer to forward herewith D.O. No. 2018/RE/161/22 dated 27.09.2018 received from Ministry of Railways on the subject mentioned above and to request you to kindly take appropriate action.


Encl.: As Above (E-mailed)

11.14


2018 11

Yours sincerely.

(A. K. Mandal) Under Secretary to the Government of India Telephone No. 011-23382269

40

S

-•)`

THE SINGARENI COLLIERIES COMPANY LTD (A GOVERENMENT COMPANY) 2X600 MW, SINGARENI THERMAL POWER PROJECT JAIPUR (V & M), PIN 504216, MANCHERIAL DIST, TELENGANA STATE

Statement showing break-up of actual capital cost of STPP up to CoD of U-1, CoD of U-2, addl cap exp beyond CoD of U-2 in FY 2016-17, FY 2017-18, upto 30.09.2018 & Estimated upto 31.03.2019

2. BOP Package model	DPR Head	As per Tariff filing in 2/2016	Cost Approved as per Revised Cost Estimate -2	Up to COD U4 1 (25.09.2016)	Oct-Nov'16 (From COD1 to COD2)	Up to COD U- 2 (02.12.2016)	Actual as on 31.03.2017	Actual as on 31.03.2018	Actual as on 30.09.2018	Estimated Capita Cost as on 31,03.2019
BOP Package No. No. No. BoP Total 1038.00 1020.00 837.26 27.70 864.96 877.16 977.42 986.72 1020 3.SCCL Scope works	1. BTG Package							•		
Dep Tackage 1038.00 1020.00 837.26 27.70 864.96 877.10 977.42 986.72 1020 3.SCCL Scope works	BTG Total	4878.00	4934.50	4749.95	31.59	4781.54	4772.14	4772.14	4,810.61	4934.50
3.SCCL Scope works	2. BOP Package	1								1
Land* 59.00 50.00 39.70 0.66 40.36 39.71 39.87 51.82 51 Survey & Soil Investigation 1.00 0.30 0.02 0.00 0.02	BoP Total	1038.00	1020.00	837.26	27.70	864.96	877.10	977.42	, 986.72	1020.00
Survey & Soil Investigation 1.00 0.30 0.02 0.00 0.02 <th0.02< th=""> 0.02 0.02 <th< td=""><td>3.SCCL Scope works</td><td>· · ·</td><td></td><td>19</td><td></td><td></td><td></td><td></td><td>-</td><td></td></th<></th0.02<>	3.SCCL Scope works	· · ·		19					-	
Site Dev, Enabling, Temp Sheds 25.00 24.00 21.35 0.00 21.35 23.38 23.39 23.39 24.4 Roads & Culverts 20.00 20.00 11.44 0.00 11.44 11.75 12.34 12.41 20.00 Coal transport roads 56.48 52.00 42.61 0.00 42.61 45.72 44.63 44.16 52.2 Boundary walls 17.00 19.00 16.58 0.36 16.94 17.19 17.	Land*	59.00	50.00	39.70	0.66	40.36	39.71	39.87	51.82	51.82
Roads & Culverts 20.00 20.00 11.44 0.00 11.44 11.75 12.34 12.41 20.0 Coal transport roads 56.48 52.00 42.61 0.00 42.61 45.72 44.63 44.16 52.2 Boundary walls 17.00 19.00 16.58 0.36 16.94 17.19 17.19 17.19 19.9 Reservoir 67.00 58.00 42.93 0.24 43.17 46.07 51.48 51.52 58. Water supply-1 TMC 86.00 85.00 79.86 3.62 83.48 83.96 84.18 84.22 85. Water supply-2 TMC(incleic) 320.00 293.00 240.78 4.53 245.31 250.38 274.53 308.22 320. Gate complex, Security etc 5.40 5.40 0.23 0.00 0.23 0.60 1.45 1.34 5. Environment 5.00 4.00 0.74 0.05 0.79 0.78 0.87 1.20 <t< td=""><td>Survey & Soil Investigation</td><td>and the second se</td><td>and the second se</td><td>and the second se</td><td></td><td>0.02</td><td>0.02</td><td>0.02</td><td>0.02</td><td>0.30</td></t<>	Survey & Soil Investigation	and the second se	and the second se	and the second se		0.02	0.02	0.02	0.02	0.30
Note of the orbit of the second sec	Site Dev, Enabling, Temp Sheds	25.00	24.00	21.35	0.00	21.35	23.38	23.39	23.39	24.00
Coal transport roads 56.48 52.00 42.61 0.00 42.61 45.72 44.63 44.16 52.23 Boundary walls 17.00 19.00 16.58 0.36 16.94 17.19 17.19 17.19 19.9 Reservoir 67.00 58.00 42.93 0.24 43.17 46.07 51.48 51.52 58.8 Water supply-1 TMC 86.00 85.00 79.86 3.62 83.48 83.96 84.18 84.22 85.95 Gate complex, Security etc 5.40 5.40 0.23 0.00 0.23 0.60 1.45 1.34 55.9 Rly Siding** 80.00 380.00 78.53 2.21 80.74 153.10 270.87 293.69 380.0 Township & GH 145.00 145.00 50.20 1.98 52.18 63.50 90.30 99.39 145.5 Environment 5.00 4.00 0.74 0.05 0.79 0.78 0.87 1.20 44.65 <td>Roads & Culverts</td> <td>20.00</td> <td>20.00</td> <td>11.44</td> <td>0.00</td> <td>11.44</td> <td>11.75</td> <td>12.34</td> <td>12.41</td> <td>20.00</td>	Roads & Culverts	20.00	20.00	11.44	0.00	11.44	11.75	12.34	12.41	20.00
Boundary walls17.0019.0016.580.3616.9417.1917.1919.9Reservoir67.0058.0042.930.2443.1746.0751.4851.5258.Water supply-1 TMC86.0085.0079.863.6283.4883.9684.1884.2285.Water supply-2 TMC(incl elec)320.00293.00240.784.53245.31250.38274.53308.22320.0Gate complex, Security etc5.405.400.230.000.230.601.451.345.Rly Siding**80.00380.0078.532.2180.74153.10270.87293.69380.0Township & GH145.00145.0050.201.9852.1863.5090.3099.39145.5Environment5.004.000.740.050.790.780.871.204.4CSR *22.1022.109.290.169.4510.0510.7311.0022.Weigh bridges, fire tender etc2.002.000.420.000.420.450.452.4Construction power25.0030.0024.660.3124.9724.4024.4024.00Furniture & office automation5.006.002.370.002.372.182.724.166.0Misc Expenditure5.008.003.250.233.483.994.504.508.0BAY, CCT & CVTs		56.48	52.00	42.61	0.00	42.61	45.72	44.63	44.16	52.00
Reservoir67.0058.0042.930.2443.1746.0751.4851.5258.Water supply-1 TMC86.0085.0079.863.6283.4883.9684.1884.2285.Water supply-2 TMC(incl elec)320.00293.00240.784.53245.31250.38274.53308.22320.Gate complex, Security etc5.405.400.230.000.230.601.451.345.Rly Siding**80.00380.0078.532.2180.74153.10270.87293.69380.Township & GH145.00145.0050.201.9852.1863.5090.3099.39145.Environment5.004.000.740.050.790.780.871.204.CSR *22.1022.109.290.169.4510.0510.7311.0022.Weigh bridges, fire tender etc2.002.000.420.000.420.450.452.Start up power & commen eqpt42.0049.0042.000.0042.0048.0248.0248.0249.0Construction power25.0030.002.370.002.372.182.724.166.0Misc Expenditure5.008.003.250.233.483.994.504.508.0BAY, CCT & CVTs0.0028.70000.000.0028.7030.7430.7	Boundary walls	17.00	19.00	16.58	0.36	16.94	17.19	17.19	17.19	19.00
Mate orpposition 320.00 293.00 240.78 4.53 245.31 250.38 274.53 308.22 320.0	Reservoir	67.00	58.00	42.93	0.24	43.17	46.07	51.48	51.52	58.00
Water supply-2 TMC(incl elec)320.00293.00240.784.53245.31250.38274.53308.22320.Gate complex, Security etc5.405.400.230.000.230.601.451.345.Rly Siding**80.00380.0078.532.2180.74153.10270.87293.69380.0Township & GH145.00145.0050.201.9852.1863.5090.3099.39145.0Environment5.004.000.740.050.790.780.871.204.CSR *22.1022.109.290.169.4510.0510.7311.0022.Weigh bridges, fire tender etc2.000.420.000.420.450.450.452.4Construction power25.0030.0024.660.3124.9724.4024.4024.40Furniture & office automation5.006.002.370.002.372.182.724.166.0Misc Expenditure5.008.003.250.233.483.994.504.508.0BAY, CCT & CVTs0.0028.70000.000.0028.7030.7430.7	Water supply-1 TMC	86.00	85.00	79.86	3.62	83.48	83.96	84.18	84.22	85.00
Gate complex, Security etc5.405.400.230.000.230.601.451.345.Rly Siding**80.00380.0078.532.2180.74153.10270.87293.69380.0Township & GH145.00145.0050.201.9852.1863.5090.3099.39145.00Environment5.004.000.740.050.790.780.871.204.00CSR *22.1022.109.290.169.4510.0510.7311.0022.00Weigh bridges, fire tender etc2.002.000.420.000.4200.450.450.452.0Start up power & commen eqpt42.0049.0042.000.0044.0048.0248.0248.0249.00Construction power25.0030.0024.660.3124.9724.4024.4030.00Furniture & office automation5.005.003.230.002.372.182.724.166.0Misc Expenditure5.008.003.250.233.483.994.504.508.0BAY, CCT & CVTs0.0028.70000.000.0028.7030.7430.74		320.00	293.00	240.78	4.53	245.31	250.38	274.53	308.22	320.00
Rly Siding**80.00380.0078.532.2180.74153.10270.87293.69380.Township & GH145.00145.0050.201.9852.1863.5090.3099.39145.Environment5.004.000.740.050.790.780.871.204.CSR *22.1022.109.290.169.4510.0510.7311.0022.Weigh bridges, fire tender etc2.002.000.420.000.420.450.450.452.4Start up power & commen eqpt42.0049.0042.000.0048.0248.0248.0249.0Construction power25.0030.0024.660.3124.9724.4024.4030.0Furniture & office automation5.008.003.250.233.483.994.504.508.0BAY, CCT & CVTs0.0028.70000.000.0028.7030.7430.7	Gate complex, Security etc	5.40	5.40	0.23	0.00	0.23	0.60	1.45	1.34	5.40
Township & GH145.00145.0050.201.9852.1863.5090.3099.39145.Environment5.004.000.740.050.790.780.871.204.CSR *22.1022.109.290.169.4510.0510.7311.0022.Weigh bridges, fire tender etc2.002.000.420.000.420.450.450.452.0Start up power & commen eqpt42.0049.0042.000.0042.0048.0248.0249.0Construction power25.0030.0024.660.3124.9724.4024.4030.0Furniture & office automation5.005.002.370.002.372.182.724.166.0Misc Expenditure5.008.003.250.233.483.994.504.508.0BAY, CCT & CVTs0.0028.70000.000.0028.7030.7430.7		80.00	380.00	78.53	2.21	80.74	153.10	270.87	293.69	380.00
Environment5.004.000.740.050.790.780.871.204.0CSR *22.1022.109.290.169.4510.0510.7311.0022.Weigh bridges, fire tender etc2.002.000.420.000.420.450.450.452.0Start up power & commen eqpt42.0049.0042.000.0042.0048.0248.0248.0249.0Construction power25.0030.0024.660.3124.9724.4024.4030.0Furniture & office automation5.00-6.002.370.002.372.182.724.166.0Misc Expenditure5.008.003.250.233.483.994.504.508.0BAY, CCT & CVTs0.0028.70000.000.0028.7030.7430.7		145.00	145.00	50.20	1.98	52.18	· 63.50	90.30	99.39	145.00
CSR* 22.10 22.10 22.10 9.29 0.16 9.45 10.05 10.73 11.00 22. Weigh bridges, fire tender etc 2.00 2.00 0.42 0.00 0.42 0.45<		5.00	4.00	0.74	0.05	0.79	0.78	0.87	1.20	4.00
Weigh bridges, fire tender etc 2.00 2.00 0.42 0.00 0.42 0.45		22.10	. 22.10	9.29	0.16	9.45	10.05	10.73	11.00	22.10
Start up power & commen eqpt 42.00 49.00 42.00 0.00 42.00 48.02 48.02 48.02 48.02 49.00 Construction power 25.00 30.00 24.66 0.31 24.97 24.40 24.40 24.40 30.00 30.00 237 0.00 2.37 2.18 2.72 4.16 6.00 6.00 3.25 0.23 3.48 3.99 4.50 4.50 8.00 8.00 8.02 30.74	Weigh bridges, fire tender etc	2.00	2.00	0.42	0.00	0.42	0.45	0.45	0.45	2.00
Construction power 25.00 30.00 24.66 0.31 24.97 24.40 24.40 24.40 30.00 Furniture & office automation 5.00 5.00 2.37 0.00 2.37 2.18 2.72 4.16 6.00 Misc Expenditure 5.00 8.00 3.25 0.23 3.48 3.99 4.50 4.50 8.00 BAY, CCT & CVTs 0.00 28.70 0 0 0.00 0.00 28.70 30.74 30.74		42.00	49.00	42.00	0.00	42.00	48.02	48.02	48.02	49.00
Furniture & office automation 5.00 6.00 2.37 0.00 2.37 2.18 2.72 4.16 6.0 Misc Expenditure 5.00 8.00 3.25 0.23 3.48 3.99 4.50 4.50 8.0 BAY, CCT & CVTs 0.00 28.70 0 0 0.00 28.70 30.74 30.74		25.00	30.00	24.66	0.31	24.97	24.40	24.40		30.00
Misc Expenditure 5.00 8.00 3.25 0.23 3.48 3.99 4.50 4.50 8.0 BAY, CCT & CVTs 0.00 28.70 0 0 0,00 0.00 28.70 30.74 30.74		5.00	5 6.00	2.37	0.00	2.37	2.18	the second s	and the second se	6.00
BAY, CCT & CVTs 0.00 28.70 0 0 0.00 28.70 30.74 30.7		5.00	8.00	3.25	0.23	3.48	the second se	the second se		8.00
		0.00	28.70	. 0	0	0.00				30.74
		987.98	1,281.50	706.96	14.35	721.31				1,312.36
								* *		

F

DPR Head	As per Tariff filing in 2/2016	Cost Approved as per Revised Cost Estimate -2	Up to COD U- 1 (25.09.2016)	Oct-Nov'16 (From COD1 to COD2)	Up to COD U- 2 (02.12.2016)	Actual as on 31.03.2017	Actual as on 31.03.2018	Actual as on 30.09.2018	Estimated Capital Cost as on 31.03.2019
4. OTHERS								1 a	at a
Contingencies	47.52	5.00	11.32	0.00	11.32	13.79	16.20	16.20	16.20
Establishment costs	70.00	94.00	69.80	0.00	69.80	89.89	88.73	92.13	94.00
Consultancy & Engg	127.00	120.00	107.77	1.96	109.73	114.93	119.44	119.44	120.00
Start up fuel	40.00	41.00	38.69	2.09	40.78	40.20	40.20	40.20	40.20
Operator Training	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Development exp	0.00	0.00	0.00	0.00	0.00	2.96	2.96	2.96	
Margin Money	.0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Financing Expenses	2.00	1.00	0.00	0.00	0.00	0.50	0.50	0.50	1.00
Interest during construction	1058.00	1266.00	1231.73	32.61	1264.34	1280.98	1302.53	1,264.34	1,264.34
O&M-Expenditure upto COD	0.00	17.00	18.15	2.75	20.90	16.90	17.00	17.00	17.00
Others Total	1346.02	1544.00	1477.46	39.41	1516.87	1560.14	1587.56	1,552.77	1555.70
Grand Total	8250.00	8780.00	7771.63	113.05	7884.68	8034.65	8367.76	8461.94	8822.56

** Railway Expenditure is inclusive of CCDAC Claim Receivable of Rs.175 crs

Notes:

1. Advances given against MDCC are considered as Expenditure upto COD-2

2. Due to SAP Configuration, Back date Posting of Expenditure is Not Allowed even though expenditure is related to before COD date

3. Delay in Submission of Bills by BHEL even after completion of work upto COD

4. PVC bills & Mandatory Spare Bills Subsequently submitted after COD by BHEL

5. Land value includes deposits 8.66 crs which was not accounted due to SAP Configuration as at 30.09.2018

6. CSR expenditure can be read as Mandatory capital expenditure under MoEF clearance.

7. IDC Incurred after COD of unit -2 is allocated to the balance of assets as on 30.09.2018.

Verified & formed correct.

For RAMAMOORTHY (N) & Co., Chartered Accountants FRN: 02899 S CA. Surendranath Bharathi Partner Mem. No: 023837

S

3.

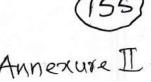
Appendix-III

153

Statement of liability

Name of the Company: Name of the Power Station: The Singareni Collieries Company Limited Singareni Thermal Power Project

-


SI. No.	Breakdown	Actual capital cost as on 31.03.2017	Amount Disbursed upto 31.03.2017	Liability as on -31.03.2017	Actual capital cost as on 31.03.2018	Amount Disbursed upto 31.03.2018	Liability as on 31.03.2018	Actual capital cost as on 30.09.2018	Amount Disbursed upto 30.09.2018	
(1)	(2)				-		1			
1	BTG package						- 4100	-		
1,1	BTG Supply									
1.2	BTG Erection							-		
1.3	BTG Freight			-1						
1.4	BTG Civil								•	
1.5	Subtotal ·				· · · ·					
1.0	Increase in taxes and duties									
1.8	BTG Grand Total	4,772.14	4,355.75	416.39	4,772.14	4,592.84	179.30	4,810.61	4,526.73	184.8
2	BOP package	4,172.14	4,505.75	410,33	4,112.14	4,032.04	17 8.50	4,010,01	4,520.75	104.0
2.1	BOP Mechanical& Electrical (supply)						*			'
2.2	BOP Civil									
2.3	BOP Erection									-
2.4	BOP Freight				-					
2.5	Subtolal								1	
2,6	Estimated PVC		4				1.1		14	
2.7	BOP Total	877.10	872.80	4.30	977.42	946.30	31.12	986.72	959.24	27.4
3	Other works undertaken by SCCL	•								100
3,1	Land	39.71	39.71	-	39.87	39.87	0	51.82	51.82	
3.2	Survey & soil Investigation	0.02	- 0.02		0.02	0.02	0	0.02	0.02	
3.3	Site Dev, Enabling, temp Sheds etc.	23.38	23.38		23.39	,23.39	0	23.39	23.39	
3.4	Roads & Culverts	11.75	11.75	i	12.34	12.34	0	12.41	12.41	
3.5	Coal Transport Roads out of BOP savings	45.72	45.72		44.63	44.63	0	44.16	44.16	
3.6	Boundary Walls	17.19	17.19	-	17.19	17.19	0	17.19	17.19	
3.7	Reservoir (46.07	46.07		51.48	51.48	0	51.52	51.52	
3.8	Water supply-1 TMC	83.96	83.95	5 .	84.18	84.18	0	84.22	84.22	
3.9	Water supply-2 TMC	250.38	250.38		274,53	274.53	0	308.22	308.22	
3.10	Gate Complex, Security, etc.	0.60	0.60		1.45	1.45	0	1.34	1.34	
3.11	Railway Siding	153.10	153.10		270.87	270.87	0.	293.69	293.69	
3.12	Township & Guest House & other	63.50	63.50		90.30	90.30	0	99.39	99.39	
3.13	Environment	0.78	0.78	8 .	0.87	0.87	0	1.20	. 1.20	-
3.14	CSR	10.05	10.00	5 .	10.73	10.73	0	11.00	11.00	
3.15	Weigh Bridges, Fire Tender	0.45	0.43	2 0.03	3 0.45	0.45	5 0	0.45	0.45	
3.16	Start up Power & common Equipment	48.02	48.0	2 .	48.02	48.02	2 0	48.02	48.02	
3.17	Construction Power	24.40	24.4	0 .	24.40	24.40	0 0	24.40	24.40	
3.18	Furniture & office automation	2.18	2.1	8	. 2.72	2.73	2 0 .	4.16		
3.19	Misc Expenditure	3.99	3.9	8	. 4.50	4.50	0	4.50	4.50	
3.20	BAY,CT and CVT			•	- 28.70	28.70	0 0	30.74		-
3.21	Other works undertaken by SCCL	825.25	825.2	2 0.0	3 1,030.68	1,030.6	5	1,111.84	1,111.8	4

:27

Appendia-G (54) Rupees in crores

-:

DPR Head	Actual as on 30.09.2018	Estimated Capital Cost as on 31.03.2019	Estimated cost between 01.10.2018 to 31.03.2019 (as on 28.11.2018)	Expected Spill Over after 31.03.2019	Remarks
. BTG Package BTG Total	4810.61	4934.50	123.89	0.00	
. BOP Package	4010.01	4754.30	125.09	0.00	
BoP Total	986.72	1020.00	33.28	0.00	
SCCL Scope works	51.82	51.82	0.00		
urvey & Soil Investigation	0.02	0.30	0.00		
lite Dev, Enabling, Temp Sheds	23.39	24.00	0.61		
loads & Culverts	12.41	20.00	7.59		
Coal transport roads	44.16	52.00	7.84		
Boundary walls	17.19	19.00	1.81		
Reservoir Water supply-1 TMC	51.52 84.22	58.00 85.00	6.48 0.78		
Vater supply-2 TMC(incl elec)	308.22	320.00	11.78		
Gate complex, Security etc	1.34	5.40	4.06		
					 Codal charges have to be paid to railways (on completion cost of railway line) after completion & commissioning of the total siding. Project Management Consultant (PMC) charges have to be paid to RITEs (on completion cost of railway line) after completion & commissioning of the total siding.
Rly Siding**	293.69	380.00	86.31	22.00	□ Track linking work is in progress and is expected for completion by 30.04.2019. Bills of expenditure/ final bill payable on this work.
					M/s Sunil Hitech Engineers Limited got admitted in NCLT. Thereby, progress of the works affected. When the IRP (Interim Resolution Professional)assured for payments, works are
Township & GH Environment	99.39		45.61		restarted and the works are in progress.
CSR *	11.00				CSR works are being taken up by the District Collector : Mancherial.30 % advance amounts were released to the District Collector for various approved works and Claims are yet to be received for the balance 70%.
Weigh bridges, fire tender etc	0.45				
Start up power & common eqpt	48.02	49.00	0.98		
Construction power	24.40				
Furniture & office automation Misc Expenditure BAY, CCT & CVTs SCCL ScopeTotal	4.16 4.50 30.74 1111.85	8.00 30.74) 3.50 4 0.00) 3.00	Contingency in nature being monitored different departments of STPP. Executed as per the requirement.
SCCL Scoperotal	1111.00	101200			
4. OTHERS					
Contingencies	16.20				
Establishment costs	92.13				2
Consultancy & Engg	119.44				
Start up fuel Operator Training	40.20		7.		
Development exp	2.90		6 0.0	0	
Margin Money	0.00				
Financing Expenses	0.50				
Interest during construction	1264.34				
O&M-Expenditure upto COD	1552.7	and the second se			

THE SINGARENI COLLIERIES COMPANY LIMITED

(A Government Company) 2 X 600 MW SINGARENI THERMAL POWER PLANT Jaipur (V&M)-504216, Mancherial (Dist), Telangana State.

Ref No: STPP/COML/2019-20/45 /61

Dt.18.03.2019

NOTE

Sub: Approval for submission of ARR and MYT petition and Business and Payment of requisite filing fee to TSERC along with required authorization for filing Multi-year tariff petition for ensuing control period of 2019-24.

 SCCL has established Singareni thermal power plant (STPP) in Jaipur, Telangana in FY 2016-17. SCCL had entered into a Power Purchase Agreement (PPA) with two Distribution companies of Telangana for supplying the total power generated from STPP at a tariff decided by hon'ble Telangana State Electricity Regulatory Commission (TSERC).

- The Hon'ble TSERC has notified terms and condition for determination of generation tariff regulation 2019 on 04.01.2019. This regulation shall be applicable to all existing and future generating entities for determination of annual revenue requirement in the state of Telangana from 1st April 2019 to 31st March 2024.
- 3. SCCL has to submit Aggregate Revenue Requirement and Multi-Year tariff petition 2019-24, Business Plan 2019-24 and Capital investment Plan 2019-24 within 31st March 2019 before the Hon'ble TSERC as per regulation 3.8.1, regulation 7 and regulation 27 of generation tariff regulation 2019. The relevant portion of regulation is attached as Flag-A.
- 4. The capital investment plan is already approved by the competent authority. Further to this, the Aggregate revenue requirement (ARR) and Business Plan are made with the necessary inputs from O&M, finance, Civil, Coal, Personnel & E&M department for submission. The same is now ready for submission to

1 | Page

Ref No: STPP/COML/2019-20/45

Dt.18.03.2019 -

TSERC. The copy of ARR is attached in Flag -B and copy of business plan is attached in Flag-C.

- 5. As per Telangana State Electricity Regulation commission, Hyderabad (Conduct of Business) Regulations, 2015, Chapter II, point Sl. No. 11(5), the proceedings initiated before the commission is to be signed by the Managing Director or a Director of the Company. Any other person signing the petition should have authorization from the Board of Directors by a specific or general resolution. Copy of the relevant portion of the regulation is attached as Flag D.
- 6. Further, as per Sl.No. 4.3.a of Regulation no. 2 of 2016 "Levy of fees for various services rendered by the commission" a fee of Rs 20,000/- per MW with a maximum of Rs 150 lakhs. Further, business plan and capital investment plan can be filed under section 94(2) for which a fee of 10,000 each will be required as per 4.4.c of the fees regulations. Copy of the relevant portion is attached as Flag E.
- 7. It is to submit that the Director (Finance) was authorized to sign the Tariff Petition for the first control period (2016-19).
- 8. Accordingly, it is kindly requested to approve
 - I. The ARR and MYT petition and Business Plan for submission to TSERC
 - II. Payment of Rs 150 Lakhs to TSERC towards tariff filing fee along with tariff application.
 - III. Payment of 20 thousand (10 thousand each) towards filing fee for Business plan & capital investment plan.
 - IV. Authorisation of Director (Finance) to sign tariff application of STPP (2X600MW) & all other associated filing related to tariff (Business plan & Capital investment plan) for 2019-24 as it was done previously.

DGM(R&C)/STPP

2 | Page

Ref No: STPP/COML/2019-20/45

Dt.18.03.2019

GM (F&A), STPP

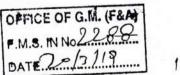
Organi_au_00 18/3.

ED, STPP (m/ 8/3

GM (F&A)/Corporate

Director (É&M)

Signed on for .


Director (P&P)

223 Director (Operations)

Director (Finance)

C&MD NZ

3 | Page

11. JAy

Dt.18.03.2019

的复数 化二乙酸酸过程

Ret No: STPP/COML/2019-20/45

ORque OU 18/3

GM (F&A), STPP

ED, STPP (rky 83)

GM (F&A)/Corporate

Director (E&M) Porton Director (P&P)

Director (Operations)

Director (Finance)

C&MD

ariaat yo oo - *		F G.M	158	Pet 1	
P M.	CEO	0 9	186	21	
P 14.	5. MI	104.	118	1	
DAT	# 22	0[7]	<u></u>	1	

11. 174

6				Annez	ure II
वा स्तिपि स्टेट बैंक iranch.COMMERCIAPBRANCH HYDERABAD CODE No: 04168 440-24757979 PAY SECRETARY, TSERC, HYDER,	खेंकर्स चैक BANKERS CHEQUE ABAD	Key: VIHD Sr. No: 36		2 7 0 3 2 0 1 D D M M Y Y Y को या उनके आदेश पर OR ORDEF	9 Y 9 8 7
RUPEES Ten Thousand Only					6
		अदा करें	₹	10000.00	5
000517253068 Key: VIHDEV Sr. No: 3 me of Applicant THE SINGARENI COL	60713 AMOUNT BELOW	10001(1/5)		कुले धारलीय मोग है ल नेश STATE BANK OF N. 4	4 .
	अहस्तातरणीय / NCIT TRANSFERAELE		हस्ताक्षरक	101	2 Pa 1
		AUTHORIS	ED SIGNAT	- V -	51.96 51.96 87-(4168) 87-(4168) 84-66-808 34-66-808

** 253068** 000002000: 000517** 16